import gradio as gr import torch from diffusers import StableDiffusionXLPipeline, DPMSolverSinglestepScheduler from PIL import Image # Load the Stable Diffusion XL model def load_model(): pipe = StableDiffusionXLPipeline.from_pretrained( "sd-community/sdxl-flash", torch_dtype=torch.float16, low_cpu_mem_usage=True )#.to("cuda") pipe.scheduler = DPMSolverSinglestepScheduler.from_config( pipe.scheduler.config, timestep_spacing="trailing" ) return pipe # Function to generate images def generate_image(prompt, num_inference_steps=3, guidance_scale=1): pipe = load_model() image = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0] return image # Create the Gradio interface iface = gr.Interface( fn=generate_image, inputs=[ gr.Textbox(label="Enter a prompt for the image"), # gr.Slider(minimum=1, maximum=50, label="Number of Inference Steps"), # gr.Slider(minimum=1, maximum=20, label="Guidance Scale") ], outputs="image", title="Stable Diffusion XL Text-to-Image", description="Generate images from text prompts using Stable Diffusion XL." ) # Launch the Gradio app iface.launch()