Solo448 commited on
Commit
71c9f01
1 Parent(s): 1e7c9da

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -19,6 +19,13 @@ speaker_model = EncoderClassifier.from_hparams(
19
  savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb")
20
  )
21
 
 
 
 
 
 
 
 
22
  # Load a sample from the dataset for speaker embedding
23
  try:
24
  dataset = load_dataset("Yassmen/TTS_English_Technical_data", split="train", trust_remote_code=True)
@@ -30,12 +37,6 @@ except Exception as e:
30
  # Use a random speaker embedding as fallback
31
  speaker_embedding = torch.randn(1, 512)
32
 
33
- def create_speaker_embedding(waveform):
34
- with torch.no_grad():
35
- speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
36
- speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
37
- speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
38
- return speaker_embeddings
39
 
40
  def text_to_speech(text):
41
  # Clean up text
 
19
  savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb")
20
  )
21
 
22
+ def create_speaker_embedding(waveform):
23
+ with torch.no_grad():
24
+ speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
25
+ speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
26
+ speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
27
+ return speaker_embeddings
28
+
29
  # Load a sample from the dataset for speaker embedding
30
  try:
31
  dataset = load_dataset("Yassmen/TTS_English_Technical_data", split="train", trust_remote_code=True)
 
37
  # Use a random speaker embedding as fallback
38
  speaker_embedding = torch.randn(1, 512)
39
 
 
 
 
 
 
 
40
 
41
  def text_to_speech(text):
42
  # Clean up text