Somunia's picture
Upload 116 files
306b4ac verified
raw
history blame
21.7 kB
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <torch/extension.h>
#include <vector>
#include "selective_scan.h"
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
if (ITYPE == at::ScalarType::Half) { \
using input_t = at::Half; \
__VA_ARGS__(); \
} else if (ITYPE == at::ScalarType::BFloat16) { \
using input_t = at::BFloat16; \
__VA_ARGS__(); \
} else if (ITYPE == at::ScalarType::Float) { \
using input_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
}
#define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...) \
if (WTYPE == at::ScalarType::Half) { \
using weight_t = at::Half; \
__VA_ARGS__(); \
} else if (WTYPE == at::ScalarType::BFloat16) { \
using weight_t = at::BFloat16; \
__VA_ARGS__(); \
} else if (WTYPE == at::ScalarType::Float) { \
using weight_t = float; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
}
#define DISPATCH_WTYPE_FLOAT_AND_COMPLEX(WTYPE, NAME, ...) \
if (WTYPE == at::ScalarType::Float) { \
using weight_t = float; \
__VA_ARGS__(); \
} else if (WTYPE == at::ScalarType::ComplexFloat) { \
using weight_t = c10::complex<float>; \
__VA_ARGS__(); \
} else { \
AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
}
template<typename input_t, typename weight_t>
void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream);
template <typename input_t, typename weight_t>
void selective_scan_bwd_cuda(SSMParamsBwd &params, cudaStream_t stream);
void set_ssm_params_fwd(SSMParamsBase &params,
// sizes
const size_t batch,
const size_t dim,
const size_t seqlen,
const size_t dstate,
const size_t n_groups,
const size_t n_chunks,
const bool is_variable_B,
const bool is_variable_C,
// device pointers
const at::Tensor u,
const at::Tensor delta,
const at::Tensor A,
const at::Tensor B,
const at::Tensor C,
const at::Tensor out,
const at::Tensor z,
const at::Tensor out_z,
void* D_ptr,
void* delta_bias_ptr,
void* x_ptr,
bool has_z,
bool delta_softplus) {
// Reset the parameters
memset(&params, 0, sizeof(params));
params.batch = batch;
params.dim = dim;
params.seqlen = seqlen;
params.dstate = dstate;
params.n_groups = n_groups;
params.n_chunks = n_chunks;
params.dim_ngroups_ratio = dim / n_groups;
params.delta_softplus = delta_softplus;
params.is_variable_B = is_variable_B;
params.is_variable_C = is_variable_C;
// Set the pointers and strides.
params.u_ptr = u.data_ptr();
params.delta_ptr = delta.data_ptr();
params.A_ptr = A.data_ptr();
params.B_ptr = B.data_ptr();
params.C_ptr = C.data_ptr();
params.D_ptr = D_ptr;
params.delta_bias_ptr = delta_bias_ptr;
params.out_ptr = out.data_ptr();
params.x_ptr = x_ptr;
params.z_ptr = has_z ? z.data_ptr() : nullptr;
params.out_z_ptr = has_z ? out_z.data_ptr() : nullptr;
// All stride are in elements, not bytes.
params.A_d_stride = A.stride(0);
params.A_dstate_stride = A.stride(1);
if (!is_variable_B) {
params.B_d_stride = B.stride(0);
} else {
params.B_batch_stride = B.stride(0);
params.B_group_stride = B.stride(1);
}
params.B_dstate_stride = !is_variable_B ? B.stride(1) : B.stride(2);
if (!is_variable_C) {
params.C_d_stride = C.stride(0);
} else {
params.C_batch_stride = C.stride(0);
params.C_group_stride = C.stride(1);
}
params.C_dstate_stride = !is_variable_C ? C.stride(1) : C.stride(2);
params.u_batch_stride = u.stride(0);
params.u_d_stride = u.stride(1);
params.delta_batch_stride = delta.stride(0);
params.delta_d_stride = delta.stride(1);
if (has_z) {
params.z_batch_stride = z.stride(0);
params.z_d_stride = z.stride(1);
params.out_z_batch_stride = out_z.stride(0);
params.out_z_d_stride = out_z.stride(1);
}
params.out_batch_stride = out.stride(0);
params.out_d_stride = out.stride(1);
}
void set_ssm_params_bwd(SSMParamsBwd &params,
// sizes
const size_t batch,
const size_t dim,
const size_t seqlen,
const size_t dstate,
const size_t n_groups,
const size_t n_chunks,
const bool is_variable_B,
const bool is_variable_C,
// device pointers
const at::Tensor u,
const at::Tensor delta,
const at::Tensor A,
const at::Tensor B,
const at::Tensor C,
const at::Tensor z,
const at::Tensor out,
const at::Tensor out_z,
void* D_ptr,
void* delta_bias_ptr,
void* x_ptr,
const at::Tensor dout,
const at::Tensor du,
const at::Tensor ddelta,
const at::Tensor dA,
const at::Tensor dB,
const at::Tensor dC,
const at::Tensor dz,
void* dD_ptr,
void* ddelta_bias_ptr,
bool has_z,
bool delta_softplus,
bool recompute_out_z) {
// Pass in "dout" instead of "out", we're not gonna use "out" unless we have z
set_ssm_params_fwd(params, batch, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
u, delta, A, B, C, has_z ? out : dout,
has_z ? z : dout,
// If not recompute_out_z, pass dout instead of out_z.
// This won't be used by the bwd kernel
recompute_out_z ? out_z : dout,
D_ptr, delta_bias_ptr, x_ptr, has_z, delta_softplus);
if (!recompute_out_z) { params.out_z_ptr = nullptr; }
// Set the pointers and strides.
params.dout_ptr = dout.data_ptr();
params.du_ptr = du.data_ptr();
params.dA_ptr = dA.data_ptr();
params.dB_ptr = dB.data_ptr();
params.dC_ptr = dC.data_ptr();
params.dD_ptr = dD_ptr;
params.ddelta_ptr = ddelta.data_ptr();
params.ddelta_bias_ptr = ddelta_bias_ptr;
params.dz_ptr = has_z ? dz.data_ptr() : nullptr;
// All stride are in elements, not bytes.
params.dout_batch_stride = dout.stride(0);
params.dout_d_stride = dout.stride(1);
params.dA_d_stride = dA.stride(0);
params.dA_dstate_stride = dA.stride(1);
if (!is_variable_B) {
params.dB_d_stride = dB.stride(0);
} else {
params.dB_batch_stride = dB.stride(0);
params.dB_group_stride = dB.stride(1);
}
params.dB_dstate_stride = !is_variable_B ? dB.stride(1) : dB.stride(2);
if (!is_variable_C) {
params.dC_d_stride = dC.stride(0);
} else {
params.dC_batch_stride = dC.stride(0);
params.dC_group_stride = dC.stride(1);
}
params.dC_dstate_stride = !is_variable_C ? dC.stride(1) : dC.stride(2);
params.du_batch_stride = du.stride(0);
params.du_d_stride = du.stride(1);
params.ddelta_batch_stride = ddelta.stride(0);
params.ddelta_d_stride = ddelta.stride(1);
if (has_z) {
params.dz_batch_stride = dz.stride(0);
params.dz_d_stride = dz.stride(1);
}
}
std::vector<at::Tensor>
selective_scan_fwd(const at::Tensor &u, const at::Tensor &delta,
const at::Tensor &A, const at::Tensor &B, const at::Tensor &C,
const c10::optional<at::Tensor> &D_,
const c10::optional<at::Tensor> &z_,
const c10::optional<at::Tensor> &delta_bias_,
bool delta_softplus) {
auto input_type = u.scalar_type();
auto weight_type = A.scalar_type();
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat);
const bool is_variable_B = B.dim() >= 3;
const bool is_variable_C = C.dim() >= 3;
const bool is_complex = weight_type == at::ScalarType::ComplexFloat;
TORCH_CHECK(delta.scalar_type() == input_type);
TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
TORCH_CHECK(u.is_cuda());
TORCH_CHECK(delta.is_cuda());
TORCH_CHECK(A.is_cuda());
TORCH_CHECK(B.is_cuda());
TORCH_CHECK(C.is_cuda());
TORCH_CHECK(u.stride(-1) == 1 || u.size(-1) == 1);
TORCH_CHECK(delta.stride(-1) == 1 || delta.size(-1) == 1);
const auto sizes = u.sizes();
const int batch_size = sizes[0];
const int dim = sizes[1];
const int seqlen = sizes[2];
const int dstate = A.size(1);
const int n_groups = is_variable_B ? B.size(1) : 1;
TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");
CHECK_SHAPE(u, batch_size, dim, seqlen);
CHECK_SHAPE(delta, batch_size, dim, seqlen);
CHECK_SHAPE(A, dim, dstate);
if (!is_variable_B) {
CHECK_SHAPE(B, dim, dstate);
} else {
CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2);
TORCH_CHECK(B.stride(-1) == 1 || B.size(-1) == 1);
}
if (!is_variable_C) {
CHECK_SHAPE(C, dim, dstate);
} else {
CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2);
TORCH_CHECK(C.stride(-1) == 1 || C.size(-1) == 1);
}
if (D_.has_value()) {
auto D = D_.value();
TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
TORCH_CHECK(D.is_cuda());
TORCH_CHECK(D.stride(-1) == 1 || D.size(-1) == 1);
CHECK_SHAPE(D, dim);
}
if (delta_bias_.has_value()) {
auto delta_bias = delta_bias_.value();
TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
TORCH_CHECK(delta_bias.is_cuda());
TORCH_CHECK(delta_bias.stride(-1) == 1 || delta_bias.size(-1) == 1);
CHECK_SHAPE(delta_bias, dim);
}
at::Tensor z, out_z;
const bool has_z = z_.has_value();
if (has_z) {
z = z_.value();
TORCH_CHECK(z.scalar_type() == input_type);
TORCH_CHECK(z.is_cuda());
TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
CHECK_SHAPE(z, batch_size, dim, seqlen);
out_z = torch::empty_like(z);
}
const int n_chunks = (seqlen + 2048 - 1) / 2048;
// const int n_chunks = (seqlen + 1024 - 1) / 1024;
// at::Tensor out = torch::empty_like(u);
// Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
at::Tensor out = torch::empty_like(delta);
at::Tensor x;
x = torch::empty({batch_size, dim, n_chunks, dstate * 2}, u.options().dtype(weight_type));
SSMParamsBase params;
set_ssm_params_fwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
u, delta, A, B, C, out, z, out_z,
D_.has_value() ? D_.value().data_ptr() : nullptr,
delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
x.data_ptr(),
has_z,
delta_softplus);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)u.get_device()};
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_fwd", [&] {
selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
});
});
std::vector<at::Tensor> result = {out, x};
if (has_z) { result.push_back(out_z); }
return result;
}
std::vector<at::Tensor>
selective_scan_bwd(const at::Tensor &u, const at::Tensor &delta,
const at::Tensor &A, const at::Tensor &B, const at::Tensor &C,
const c10::optional<at::Tensor> &D_,
const c10::optional<at::Tensor> &z_,
const c10::optional<at::Tensor> &delta_bias_,
const at::Tensor &dout,
const c10::optional<at::Tensor> &x_,
const c10::optional<at::Tensor> &out_,
c10::optional<at::Tensor> &dz_,
bool delta_softplus,
bool recompute_out_z) {
auto input_type = u.scalar_type();
auto weight_type = A.scalar_type();
TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat);
const bool is_variable_B = B.dim() >= 3;
const bool is_variable_C = C.dim() >= 3;
const bool is_complex = weight_type == at::ScalarType::ComplexFloat;
TORCH_CHECK(delta.scalar_type() == input_type);
TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
TORCH_CHECK(dout.scalar_type() == input_type);
TORCH_CHECK(u.is_cuda());
TORCH_CHECK(delta.is_cuda());
TORCH_CHECK(A.is_cuda());
TORCH_CHECK(B.is_cuda());
TORCH_CHECK(C.is_cuda());
TORCH_CHECK(dout.is_cuda());
TORCH_CHECK(u.stride(-1) == 1 || u.size(-1) == 1);
TORCH_CHECK(delta.stride(-1) == 1 || delta.size(-1) == 1);
TORCH_CHECK(dout.stride(-1) == 1 || dout.size(-1) == 1);
const auto sizes = u.sizes();
const int batch_size = sizes[0];
const int dim = sizes[1];
const int seqlen = sizes[2];
const int dstate = A.size(1);
const int n_groups = is_variable_B ? B.size(1) : 1;
TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");
CHECK_SHAPE(u, batch_size, dim, seqlen);
CHECK_SHAPE(delta, batch_size, dim, seqlen);
CHECK_SHAPE(A, dim, dstate);
if (!is_variable_B) {
CHECK_SHAPE(B, dim, dstate);
} else {
CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2);
TORCH_CHECK(B.stride(-1) == 1 || B.size(-1) == 1);
}
if (!is_variable_C) {
CHECK_SHAPE(C, dim, dstate);
} else {
CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2);
TORCH_CHECK(C.stride(-1) == 1 || C.size(-1) == 1);
}
CHECK_SHAPE(dout, batch_size, dim, seqlen);
if (D_.has_value()) {
auto D = D_.value();
TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
TORCH_CHECK(D.is_cuda());
TORCH_CHECK(D.stride(-1) == 1 || D.size(-1) == 1);
CHECK_SHAPE(D, dim);
}
if (delta_bias_.has_value()) {
auto delta_bias = delta_bias_.value();
TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
TORCH_CHECK(delta_bias.is_cuda());
TORCH_CHECK(delta_bias.stride(-1) == 1 || delta_bias.size(-1) == 1);
CHECK_SHAPE(delta_bias, dim);
}
at::Tensor z, out, dz, out_z;
const bool has_z = z_.has_value();
if (has_z) {
z = z_.value();
TORCH_CHECK(z.scalar_type() == input_type);
TORCH_CHECK(z.is_cuda());
TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
CHECK_SHAPE(z, batch_size, dim, seqlen);
TORCH_CHECK(out_.has_value());
out = out_.value();
TORCH_CHECK(out.scalar_type() == input_type);
TORCH_CHECK(out.is_cuda());
TORCH_CHECK(out.stride(-1) == 1 || out.size(-1) == 1);
CHECK_SHAPE(out, batch_size, dim, seqlen);
if (dz_.has_value()) {
dz = dz_.value();
TORCH_CHECK(dz.scalar_type() == input_type);
TORCH_CHECK(dz.is_cuda());
TORCH_CHECK(dz.stride(-1) == 1 || dz.size(-1) == 1);
CHECK_SHAPE(dz, batch_size, dim, seqlen);
} else {
dz = torch::empty_like(z);
}
if (recompute_out_z) {
out_z = torch::empty_like(out);
}
}
const int n_chunks = (seqlen + 2048 - 1) / 2048;
// const int n_chunks = (seqlen + 1024 - 1) / 1024;
if (n_chunks > 1) { TORCH_CHECK(x_.has_value()); }
if (x_.has_value()) {
auto x = x_.value();
TORCH_CHECK(x.scalar_type() == weight_type);
TORCH_CHECK(x.is_cuda());
TORCH_CHECK(x.is_contiguous());
CHECK_SHAPE(x, batch_size, dim, n_chunks, 2 * dstate);
}
at::Tensor du = torch::empty_like(u);
at::Tensor ddelta = torch::empty_like(delta);
at::Tensor dA = torch::zeros_like(A);
at::Tensor dB = !is_variable_B ? torch::zeros_like(B) : torch::zeros_like(B, B.options().dtype(torch::kFloat32));
at::Tensor dC = !is_variable_C ? torch::zeros_like(C) : torch::zeros_like(C, C.options().dtype(torch::kFloat32));
at::Tensor dD;
if (D_.has_value()) { dD = torch::zeros_like(D_.value()); }
at::Tensor ddelta_bias;
if (delta_bias_.has_value()) { ddelta_bias = torch::zeros_like(delta_bias_.value()); }
SSMParamsBwd params;
set_ssm_params_bwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
u, delta, A, B, C, z, out, out_z,
D_.has_value() ? D_.value().data_ptr() : nullptr,
delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
x_.has_value() ? x_.value().data_ptr() : nullptr,
dout, du, ddelta, dA, dB, dC, dz,
D_.has_value() ? dD.data_ptr() : nullptr,
delta_bias_.has_value() ? ddelta_bias.data_ptr() : nullptr,
has_z, delta_softplus, recompute_out_z);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)u.get_device()};
auto stream = at::cuda::getCurrentCUDAStream().stream();
DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_bwd", [&] {
DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_bwd", [&] {
selective_scan_bwd_cuda<input_t, weight_t>(params, stream);
});
});
std::vector<at::Tensor> result = {du, ddelta, dA, dB.to(B.dtype()), dC.to(C.dtype()), dD, ddelta_bias};
if (has_z) { result.push_back(dz); }
if (recompute_out_z) { result.push_back(out_z); }
return result;
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("fwd", &selective_scan_fwd, "Selective scan forward");
m.def("bwd", &selective_scan_bwd, "Selective scan backward");
}