Spaces:
Sleeping
Sleeping
/****************************************************************************** | |
* Copyright (c) 2024, Tri Dao. | |
******************************************************************************/ | |
namespace cub = hipcub; | |
template<int kNThreads_, int kWidth_, bool kIsVecLoad_, typename input_t_, typename weight_t_> | |
struct Causal_conv1d_fwd_kernel_traits { | |
using input_t = input_t_; | |
using weight_t = weight_t_; | |
static constexpr int kNThreads = kNThreads_; | |
static constexpr int kWidth = kWidth_; | |
static constexpr int kNBytes = sizeof(input_t); | |
static_assert(kNBytes == 2 || kNBytes == 4); | |
static constexpr int kNElts = kNBytes == 4 ? 4 : 8; | |
static_assert(kWidth <= kNElts); | |
static constexpr bool kIsVecLoad = kIsVecLoad_; | |
using vec_t = typename BytesToType<kNBytes * kNElts>::Type; | |
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>; | |
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>; | |
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>; | |
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>; | |
static constexpr int kSmemIOSize = kIsVecLoad | |
? 0 | |
: custom_max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)}); | |
static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts; | |
static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize; | |
}; | |
template<typename Ktraits> | |
__global__ __launch_bounds__(Ktraits::kNThreads) | |
void causal_conv1d_fwd_kernel(ConvParamsBase params) { | |
constexpr int kWidth = Ktraits::kWidth; | |
constexpr int kNThreads = Ktraits::kNThreads; | |
constexpr int kNElts = Ktraits::kNElts; | |
static constexpr bool kIsVecLoad = Ktraits::kIsVecLoad; | |
using input_t = typename Ktraits::input_t; | |
using vec_t = typename Ktraits::vec_t; | |
using weight_t = typename Ktraits::weight_t; | |
// Shared memory. | |
extern __shared__ char smem_[]; | |
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_); | |
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_); | |
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_); | |
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_); | |
vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize); | |
const int tidx = threadIdx.x; | |
const int batch_id = blockIdx.x; | |
const int channel_id = blockIdx.y; | |
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride | |
+ channel_id * params.x_c_stride; | |
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride; | |
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride | |
+ channel_id * params.out_c_stride; | |
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]); | |
// Thread 0 will load the last elements of the previous chunk, so we initialize those to 0. | |
if (tidx == 0) { | |
input_t zeros[kNElts] = {0}; | |
smem_exchange[kNThreads - 1] = reinterpret_cast<vec_t *>(zeros)[0]; | |
} | |
float weight_vals[kWidth]; | |
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); } | |
constexpr int kChunkSize = kNThreads * kNElts; | |
const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize; | |
for (int chunk = 0; chunk < n_chunks; ++chunk) { | |
input_t x_vals_load[2 * kNElts] = {0}; | |
if constexpr(kIsVecLoad) { | |
typename Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts); | |
} else { | |
__syncthreads(); | |
typename Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize); | |
} | |
x += kChunkSize; | |
__syncthreads(); | |
// Thread kNThreads - 1 don't write yet, so that thread 0 can read | |
// the last elements of the previous chunk. | |
if (tidx < kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; } | |
__syncthreads(); | |
reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[tidx > 0 ? tidx - 1 : kNThreads - 1]; | |
__syncthreads(); | |
// Now thread kNThreads - 1 can write the last elements of the current chunk. | |
if (tidx == kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; } | |
float x_vals[2 * kNElts]; | |
for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); } | |
float out_vals[kNElts]; | |
for (int i = 0; i < kNElts; ++i) { | |
out_vals[i] = bias_val; | |
for (int w = 0; w < kWidth; ++w) { | |
out_vals[i] += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)]; | |
} | |
} | |
if (params.silu_activation) { | |
for (int i = 0; i < kNElts; ++i) { | |
out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i])); | |
} | |
} | |
input_t out_vals_store[kNElts]; | |
for (int i = 0; i < kNElts; ++i) { out_vals_store[i] = out_vals[i]; } | |
if constexpr(kIsVecLoad) { | |
typename Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(out), reinterpret_cast<vec_t (&)[1]>(out_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts); | |
} else { | |
typename Ktraits::BlockStoreT(smem_store).Store(out, out_vals_store, params.seqlen - chunk * kChunkSize); | |
} | |
out += kChunkSize; | |
} | |
} | |
template<int kNThreads, int kWidth, typename input_t, typename weight_t> | |
void causal_conv1d_fwd_launch(ConvParamsBase ¶ms, cudaStream_t stream) { | |
static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8; | |
BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] { | |
using Ktraits = Causal_conv1d_fwd_kernel_traits<kNThreads, kWidth, kIsVecLoad, input_t, weight_t>; | |
constexpr int kSmemSize = Ktraits::kSmemSize; | |
dim3 grid(params.batch, params.dim); | |
auto kernel = &causal_conv1d_fwd_kernel<Ktraits>; | |
if (kSmemSize >= 48 * 1024) { | |
C10_CUDA_CHECK(cudaFuncSetAttribute( | |
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize)); | |
// There is a slight signature discrepancy in HIP and CUDA "FuncSetAttribute" function. | |
C10_CUDA_CHECK(cudaFuncSetAttribute( | |
(void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize)); | |
std::cerr << "Warning (causal_conv1d fwd launch): attempting to set maxDynamicSharedMemorySize on an AMD GPU which is currently a non-op (in ROCm versions <= 6.1). This might lead to undefined behavior. \n" << std::endl; | |
} | |
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params); | |
C10_CUDA_KERNEL_LAUNCH_CHECK(); | |
}); | |
} | |
template<typename input_t, typename weight_t> | |
void causal_conv1d_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream) { | |
if (params.width == 2) { | |
causal_conv1d_fwd_launch<128, 2, input_t, weight_t>(params, stream); | |
} else if (params.width == 3) { | |
causal_conv1d_fwd_launch<128, 3, input_t, weight_t>(params, stream); | |
} else if (params.width == 4) { | |
causal_conv1d_fwd_launch<128, 4, input_t, weight_t>(params, stream); | |
} | |
} | |
template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kIsVecLoad_, typename input_t_, typename weight_t_> | |
struct Causal_conv1d_channellast_fwd_kernel_traits { | |
// The cache line is 128 bytes, and we try to read 16 bytes per thread. | |
// So we have 8 threads per "row", so 32 or 64 elements in the channel dimension. | |
// That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128 | |
// threads). Each each load is 16 x 32|64 elements in the L x C dimensions. | |
using input_t = input_t_; | |
using weight_t = weight_t_; | |
static constexpr int kNThreads = kNThreads_; | |
static_assert(kNThreads % 32 == 0); | |
static constexpr int kNWarps = kNThreads / 32; | |
static constexpr int kWidth = kWidth_; | |
static constexpr int kChunkSizeL = kChunkSizeL_; | |
static constexpr int kNBytes = sizeof(input_t); | |
static_assert(kNBytes == 2 || kNBytes == 4); | |
static constexpr int kNElts = kNBytes == 4 ? 4 : 8; | |
static constexpr int kNEltsPerRow = 128 / kNBytes; | |
static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts; // Always 8 for now | |
static_assert(kNThreadsPerRow * kNBytes * kNElts == 128); | |
static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow; // Always 4 for now | |
static_assert(kNColsPerWarp * kNThreadsPerRow == 32); | |
static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps; | |
static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad; | |
static_assert(kNLoads * kNColsPerLoad == kChunkSizeL); | |
static constexpr bool kIsVecLoad = kIsVecLoad_; | |
using vec_t = typename BytesToType<kNBytes * kNElts>::Type; | |
// using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>; | |
// using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>; | |
// static constexpr int kSmemSize = std::max({sizeof(typename BlockLoadT::TempStorage), | |
// sizeof(typename BlockStoreT::TempStorage)}); | |
// static constexpr int kSmemSize = kChunkSizeL * kNEltsPerRow * kNBytes; | |
}; | |
template<typename Ktraits, bool kHasSeqIdx> | |
__global__ __launch_bounds__(Ktraits::kNThreads) | |
void causal_conv1d_channellast_fwd_kernel(ConvParamsBase params) { | |
constexpr int kWidth = Ktraits::kWidth; | |
constexpr int kNThreads = Ktraits::kNThreads; | |
constexpr int kNElts = Ktraits::kNElts; | |
constexpr int kNWarp = Ktraits::kNWarps; | |
constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow; | |
constexpr int kLPerLoad = Ktraits::kNColsPerLoad; | |
constexpr int kChunkSizeL = Ktraits::kChunkSizeL; | |
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow; | |
using input_t = typename Ktraits::input_t; | |
using vec_t = typename Ktraits::vec_t; | |
using weight_t = typename Ktraits::weight_t; | |
// Shared memory. | |
__shared__ input_t x_smem[kWidth - 1 + kChunkSizeL][kChunkSizeC + kNElts]; | |
const int batch_id = blockIdx.x; | |
const int chunk_l_id = blockIdx.y; | |
const int chunk_c_id = blockIdx.z; | |
const int tid = threadIdx.x; | |
const int l_idx = tid / kNThreadsPerC; | |
const int c_idx = tid % kNThreadsPerC; | |
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride | |
+ (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts; | |
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) | |
+ chunk_c_id * kChunkSizeC * params.weight_c_stride; | |
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride | |
+ (chunk_l_id * kChunkSizeL + l_idx) * params.out_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts; | |
int *seq_idx = !kHasSeqIdx ? nullptr : reinterpret_cast<int *>(params.seq_idx_ptr) | |
+ batch_id * params.seqlen + chunk_l_id * kChunkSizeL; | |
input_t *initial_states = params.initial_states_ptr == nullptr || chunk_l_id > 0 ? nullptr | |
: reinterpret_cast<input_t *>(params.initial_states_ptr) + batch_id * params.initial_states_batch_stride + l_idx * params.initial_states_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts; | |
// The last L-chunk will also have enough info to write to final states, since it also contain a few x values | |
// from the previous L-chunk. | |
input_t *final_states = params.final_states_ptr == nullptr || chunk_l_id < gridDim.y - 1 ? nullptr | |
: reinterpret_cast<input_t *>(params.final_states_ptr) + batch_id * params.final_states_batch_stride + l_idx * params.final_states_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts; | |
for (int l = 0; l < Ktraits::kNLoads; ++l) { | |
input_t x_vals_load[kNElts] = {0}; | |
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride); | |
} | |
reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0]; | |
} | |
// Load the elements from the previous chunk that are needed for convolution. | |
if (l_idx < kWidth - 1) { | |
input_t x_vals_load[kNElts] = {0}; | |
if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0 | |
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride); | |
} else if (initial_states != nullptr | |
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < 0 | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(initial_states); | |
} | |
reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0]; | |
} | |
__syncthreads(); | |
if (final_states != nullptr | |
&& l_idx < kWidth - 1 | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
// x_smem[0] contains element at index chunk_l_id * kChunkSizeL - (kWidth - 1) | |
// So last few elements (index params.seqlen - kWidth + 1 + l_idx) are stored in x_smem[params.seqlen - kWidth + 1 + l_idx - (chunk_l_id * kChunkSizeL - kWidth + 1)][c_idx] | |
*reinterpret_cast<vec_t *>(final_states) = reinterpret_cast<vec_t *>(x_smem[params.seqlen + l_idx - chunk_l_id * kChunkSizeL])[c_idx]; | |
} | |
constexpr int kLPerThread = constexpr_min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL); | |
static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC); | |
constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread; | |
static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL); | |
// kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity | |
static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0); | |
static_assert((kLPerThread & (kLPerThread - 1)) == 0); | |
static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0); | |
static_assert(kNThreadsPerRow <= 32); | |
const int row_idx = tid / kNThreadsPerRow; | |
const int col_idx = tid % kNThreadsPerRow; | |
float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]); | |
float weight_vals[kWidth] = {0}; | |
if (chunk_c_id * kChunkSizeC + row_idx < params.dim) { | |
for (int w = 0; w < kWidth; ++w) { | |
weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride]; | |
} | |
} | |
float x_vals[kWidth - 1 + kLPerThread]; | |
for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) { | |
x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]); | |
} | |
int seq_idx_thread[kWidth - 1 + kLPerThread]; | |
if constexpr (kHasSeqIdx) { | |
for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) { | |
seq_idx_thread[i] = chunk_l_id * kChunkSizeL + col_idx * kLPerThread + i - (kWidth - 1) >= 0 ? seq_idx[col_idx * kLPerThread + i - (kWidth - 1)] : -1; | |
} | |
} | |
float out_vals[kLPerThread]; | |
for (int i = 0; i < kLPerThread; ++i) { | |
out_vals[i] = bias_val; | |
const int seq_idx_cur = !kHasSeqIdx ? 0 : seq_idx_thread[i + kWidth - 1]; | |
for (int w = 0; w < kWidth; ++w) { | |
if constexpr (!kHasSeqIdx) { | |
out_vals[i] += weight_vals[w] * x_vals[i + w]; | |
} else { | |
out_vals[i] += seq_idx_thread[i + w] == seq_idx_cur ? weight_vals[w] * x_vals[i + w] : 0.f; | |
} | |
} | |
if (params.silu_activation) {out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i])); } | |
} | |
__syncthreads(); | |
for (int i = 0; i < kLPerThread; ++i) { x_smem[col_idx * kLPerThread + i][row_idx] = out_vals[i]; } | |
__syncthreads(); | |
for (int l = 0; l < Ktraits::kNLoads; ++l) { | |
input_t out_vals_store[kNElts]; | |
reinterpret_cast<vec_t *>(out_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l * kLPerLoad + l_idx])[c_idx]; | |
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen | |
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) { | |
*reinterpret_cast<vec_t *>(out + l * kLPerLoad * params.out_l_stride) = reinterpret_cast<vec_t *>(out_vals_store)[0]; | |
} | |
} | |
} | |
template<int kNThreads, int kWidth, typename input_t, typename weight_t> | |
void causal_conv1d_channellast_fwd_launch(ConvParamsBase ¶ms, cudaStream_t stream) { | |
BOOL_SWITCH(params.seq_idx_ptr != nullptr, kHasSeqIdx, [&] { | |
using Ktraits = Causal_conv1d_channellast_fwd_kernel_traits<kNThreads, kWidth, 64, true, input_t, weight_t>; | |
// constexpr int kSmemSize = Ktraits::kSmemSize; | |
constexpr int kChunkSizeL = Ktraits::kChunkSizeL; | |
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow; | |
const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL; | |
const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC; | |
dim3 grid(params.batch, n_chunks_L, n_chunks_C); | |
dim3 block(Ktraits::kNThreads); | |
auto kernel = &causal_conv1d_channellast_fwd_kernel<Ktraits, kHasSeqIdx>; | |
// if (kSmemSize >= 48 * 1024) { | |
// C10_CUDA_CHECK(cudaFuncSetAttribute( | |
// kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize)); | |
// } | |
// kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params); | |
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params); | |
C10_CUDA_KERNEL_LAUNCH_CHECK(); | |
}); | |
} | |
template<typename input_t, typename weight_t> | |
void causal_conv1d_channellast_fwd_cuda(ConvParamsBase ¶ms, cudaStream_t stream) { | |
if (params.width == 2) { | |
causal_conv1d_channellast_fwd_launch<128, 2, input_t, weight_t>(params, stream); | |
} else if (params.width == 3) { | |
causal_conv1d_channellast_fwd_launch<128, 3, input_t, weight_t>(params, stream); | |
} else if (params.width == 4) { | |
causal_conv1d_channellast_fwd_launch<128, 4, input_t, weight_t>(params, stream); | |
} | |
} | |
template void causal_conv1d_fwd_cuda<float, float>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_fwd_cuda<at::Half, float>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_fwd_cuda<at::BFloat16, float>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_fwd_cuda<float, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_fwd_cuda<at::Half, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_fwd_cuda<float, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_fwd_cuda<float, float>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_fwd_cuda<at::Half, float>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, float>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_fwd_cuda<float, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_fwd_cuda<at::Half, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_fwd_cuda<float, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream); | |
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream); |