Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2024 The RWKV team and HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch RWKV6 World model.""" | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
from pathlib import Path | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
ModelOutput, | |
add_code_sample_docstrings, | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_ninja_available, | |
is_torch_cuda_available, | |
logging, | |
) | |
from .configuration_rwkv6 import Rwkv6Config | |
try: | |
from fla.ops.rwkv6.recurrent_fuse import fused_recurrent_rwkv6 | |
except ImportError: | |
print("Required module is not installed. Please install it using the following commands:") | |
print("pip install -U git+https://github.com/sustcsonglin/flash-linear-attention") | |
print("Additionally, ensure you have the correct version of Triton installed:") | |
print("pip install triton==2.2.0") | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "RWKV/rwkv-6-world-1b6" | |
_CONFIG_FOR_DOC = "Rwkv6Config" | |
def rwkv6_linear_attention_cpu(receptance, key, value, time_decay, time_first, state): | |
# For CPU fallback. Will be slower and probably take more memory than the custom CUDA kernel if not executed | |
# within a torch.no_grad. | |
batch, seq_length, _ = receptance.shape | |
num_heads, head_size = time_first.shape | |
key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2).transpose(-2, -1) | |
value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) | |
receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) | |
time_decay = torch.exp(-torch.exp(time_decay.float())).view(batch, seq_length, num_heads, head_size).permute(0, 2, 3, 1) | |
time_first = time_first.float().reshape(-1, 1, 1).reshape(num_heads, -1, 1) | |
out = torch.zeros_like(key).reshape(batch, seq_length, num_heads, head_size) | |
for current_index in range(seq_length): | |
current_receptance = receptance[:, :, current_index:current_index+1, :] | |
current_key = key[:, :, :, current_index:current_index+1] | |
current_value = value[:, :, current_index:current_index+1, :] | |
current_time_decay = time_decay[:, :, :, current_index:current_index+1] | |
attention_output = current_key @ current_value | |
out[:, current_index] = (current_receptance @ (time_first * attention_output + state)).squeeze(2) | |
with torch.no_grad(): | |
state = attention_output + current_time_decay * state | |
return out, state | |
def rwkv6_linear_attention( | |
training, | |
receptance, | |
key, | |
value, | |
time_decay, | |
time_first, | |
state, | |
): | |
no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, receptance, key, value]) | |
# Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version | |
# in this case). | |
one_token = key.size(1) == 1 | |
if not training or no_cuda or one_token: | |
return rwkv6_linear_attention_cpu( | |
receptance, key, value, time_decay, time_first, state | |
) | |
else: | |
batch, seq_length, _ = receptance.shape | |
num_heads, head_size = time_first.shape | |
key = key.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, T, H, K -> B, H, T, K | |
value = value.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, T, H, K - > B, H, T, V | |
receptance = receptance.float().view(batch, seq_length, num_heads, head_size).transpose(1, 2) # B, H, T, K | |
time_decay = -torch.exp(time_decay.float()).view(batch, seq_length, num_heads, head_size).permute(0, 2, 1, 3) # B, T, H, K -> B, H, T, K | |
time_first = time_first.float().reshape(num_heads, head_size) # H, K | |
out, state = fused_recurrent_rwkv6(receptance, key, value, time_decay, time_first, scale=1.0, initial_state=state, output_final_state=True) | |
return out.transpose(1, 2), state | |
class Rwkv6SelfAttention(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.config = config | |
self.layer_id = layer_id | |
hidden_size = config.hidden_size | |
attention_hidden_size = config.attention_hidden_size | |
self.attention_hidden_size = attention_hidden_size | |
head_size = config.head_size | |
num_heads = attention_hidden_size // head_size | |
self.time_maa_x = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.time_maa_w = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.time_maa_k = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.time_maa_v = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.time_maa_r = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.time_maa_g = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
TIME_MIX_EXTRA_DIM = 32 # generate TIME_MIX for w,k,v,r,g | |
self.time_maa_w1 = nn.Parameter(torch.empty(hidden_size, TIME_MIX_EXTRA_DIM*5)) | |
self.time_maa_w2 = nn.Parameter(torch.empty(5, TIME_MIX_EXTRA_DIM, hidden_size)) | |
self.time_decay = nn.Parameter(torch.empty(1, 1, attention_hidden_size)) | |
TIME_DECAY_EXTRA_DIM = 64 | |
self.time_decay_w1 = nn.Parameter(torch.empty(hidden_size, TIME_DECAY_EXTRA_DIM)) | |
self.time_decay_w2 = nn.Parameter(torch.empty(TIME_DECAY_EXTRA_DIM, attention_hidden_size)) | |
self.time_faaaa = nn.Parameter(torch.empty(num_heads, config.head_size)) | |
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) | |
self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False) | |
self.key = nn.Linear(hidden_size, attention_hidden_size, bias=False) | |
self.value = nn.Linear(hidden_size, attention_hidden_size, bias=False) | |
self.gate = nn.Linear(hidden_size, attention_hidden_size, bias=False) | |
self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False) | |
self.ln_x = nn.GroupNorm(num_heads, hidden_size, eps=(1e-5)*(config.head_size_divisor**2)) | |
def extract_key_value(self, hidden, state=None): | |
# Mix hidden with the previous timestep to produce key, value, receptance | |
if hidden.size(1) == 1 and state is not None: | |
shifted = state[0][:, :, self.layer_id] | |
else: | |
shifted = self.time_shift(hidden) | |
if state is not None: | |
shifted[:, 0] = state[0][:, :, self.layer_id] | |
if len(shifted.size()) == 2: | |
shifted = shifted.unsqueeze(1) | |
x = hidden | |
B, T, C = hidden.shape | |
xx = shifted - x | |
xxx = x + xx * self.time_maa_x | |
xxx = torch.tanh(xxx @ self.time_maa_w1).view(B*T, 5, -1).transpose(0, 1) | |
xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1) | |
mw, mk, mv, mr, mg = xxx.unbind(dim=0) | |
time_decay = x + xx * (self.time_maa_w + mw) | |
key = x + xx * (self.time_maa_k + mk) | |
value = x + xx * (self.time_maa_v + mv) | |
receptance = x + xx * (self.time_maa_r + mr) | |
gate = x + xx * (self.time_maa_g + mg) | |
receptance = self.receptance(receptance) | |
key = self.key(key) | |
value = self.value(value) | |
gate = F.silu(self.gate(gate)) | |
time_decay = torch.tanh(time_decay @ self.time_decay_w1) @ self.time_decay_w2 | |
time_decay = self.time_decay + time_decay | |
if state is not None: | |
state[0][:, :, self.layer_id] = hidden[:, -1] | |
return receptance, key, value, gate, time_decay, state | |
def forward(self, hidden, state=None, use_cache=False, seq_mode=True): | |
receptance, key, value, gate, time_decay, state = self.extract_key_value(hidden, state=state) | |
B,T,C = receptance.shape | |
H, S = self.time_faaaa.shape | |
layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None | |
out, layer_state = rwkv6_linear_attention( | |
self.training, receptance, key, value, time_decay, self.time_faaaa, layer_state, | |
) | |
if layer_state is not None: | |
state[1][:, :, :, :, self.layer_id] = layer_state | |
out = out.reshape(B * T, H * S) | |
out = F.group_norm(out, num_groups=H, weight=self.ln_x.weight.to(out.dtype), bias=self.ln_x.bias.to(out.dtype), eps=self.ln_x.eps).reshape(B, T, H * S) | |
out = out.to(dtype=hidden.dtype) * gate | |
out = self.output(out) | |
return out, state | |
class Rwkv6FeedForward(nn.Module): | |
def __init__(self, config, layer_id=0): | |
super().__init__() | |
self.config = config | |
self.layer_id = layer_id | |
hidden_size = config.hidden_size | |
# https://github.com/BlinkDL/RWKV-LM/blob/3db37a72356b736966ddd377268f02b80963af3f/RWKV-v4neo/train.py#L168 | |
intermediate_size = ( | |
config.intermediate_size | |
if config.intermediate_size is not None | |
else int((config.hidden_size * 3.5) // 32 * 32) | |
) | |
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1)) | |
self.time_maa_k = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.time_maa_r = nn.Parameter(torch.empty(1, 1, hidden_size)) | |
self.key = nn.Linear(hidden_size, intermediate_size, bias=False) | |
self.receptance = nn.Linear(hidden_size, hidden_size, bias=False) | |
self.value = nn.Linear(intermediate_size, hidden_size, bias=False) | |
def forward(self, hidden, state=None): | |
if hidden.size(1) == 1 and state is not None: | |
shifted = state[2][:, :, self.layer_id] | |
else: | |
shifted = self.time_shift(hidden) | |
if state is not None: | |
shifted[:, 0] = state[2][:, :, self.layer_id] | |
if len(shifted.size()) == 2: | |
shifted = shifted.unsqueeze(1) | |
delta_hidden_to_shifted = shifted - hidden | |
key = hidden + delta_hidden_to_shifted * self.time_maa_k | |
receptance = hidden + delta_hidden_to_shifted * self.time_maa_r | |
key = torch.square(torch.relu(self.key(key))) | |
value = self.value(key) | |
receptance = torch.sigmoid(self.receptance(receptance)) | |
if state is not None: | |
state[2][:, :, self.layer_id] = hidden[:, -1] | |
return receptance * value, state | |
class Rwkv6Block(nn.Module): | |
def __init__(self, config, layer_id): | |
super().__init__() | |
self.config = config | |
self.layer_id = layer_id | |
if layer_id == 0: | |
self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) | |
self.attention = Rwkv6SelfAttention(config, layer_id) | |
self.feed_forward = Rwkv6FeedForward(config, layer_id) | |
def forward(self, hidden, state=None, use_cache=False, output_attentions=False, seq_mode=True): | |
if self.layer_id == 0: | |
hidden = self.pre_ln(hidden) | |
attention, state = self.attention(self.ln1(hidden), state=state, use_cache=use_cache, seq_mode=seq_mode) | |
hidden = hidden + attention | |
feed_forward, state = self.feed_forward(self.ln2(hidden), state=state) | |
hidden = hidden + feed_forward | |
outputs = (hidden, state) | |
if output_attentions: | |
outputs += (attention,) | |
else: | |
outputs += (None,) | |
return outputs | |
class Rwkv6PreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = Rwkv6Config | |
base_model_prefix = "rwkv6" | |
_no_split_modules = ["Rwkv6Block"] | |
_keep_in_fp32_modules = ["time_decay", "time_first"] | |
supports_gradient_checkpointing = True | |
def _init_weights(self, module): | |
"""Initialize the weights.""" | |
if isinstance(module, Rwkv6SelfAttention): | |
layer_id = module.layer_id | |
num_hidden_layers = module.config.num_hidden_layers | |
hidden_size = module.config.hidden_size | |
attention_hidden_size = module.attention_hidden_size | |
head_size = module.config.head_size | |
num_heads = attention_hidden_size // head_size | |
ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1 | |
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0 | |
time_weight = torch.tensor( | |
[i / hidden_size for i in range(hidden_size)], | |
dtype=module.time_maa_k.dtype, | |
device=module.time_maa_k.device, | |
) | |
time_weight = time_weight[None, None, :] | |
decay_speed = [ | |
-6.0 + 5.0 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1) | |
for h in range(attention_hidden_size) | |
] | |
decay_speed = torch.tensor(decay_speed, dtype=module.time_decay.dtype, device=module.time_decay.device) | |
tmp = torch.tensor( | |
[ | |
(1.0 - (i / (attention_hidden_size - 1.0))) * ratio_0_to_1 + 0.1 * ((i + 1) % 3 - 1) | |
for i in range(attention_hidden_size) | |
], | |
dtype=module.time_faaaa.dtype, | |
device=module.time_faaaa.device, | |
) | |
with torch.no_grad(): | |
module.time_maa_x.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0) | |
module.time_maa_w.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0) | |
module.time_maa_k.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0) | |
module.time_maa_v.data = 1.0 - (torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1) | |
module.time_maa_r.data = 1.0 - torch.pow(time_weight, 0.5 * ratio_1_to_almost0) | |
module.time_maa_g.data = 1.0 - torch.pow(time_weight, 0.5 * ratio_1_to_almost0) | |
TIME_MIX_EXTRA_DIM = 32 # generate TIME_MIX for w,k,v,r,g | |
module.time_maa_w1.data = torch.zeros(hidden_size, TIME_MIX_EXTRA_DIM*5, dtype=module.time_maa_w1.dtype, device=module.time_maa_w1.device).uniform_(-1e-4, 1e-4) | |
module.time_maa_w2.data = torch.zeros(5, TIME_MIX_EXTRA_DIM, hidden_size, dtype=module.time_maa_w2.dtype, device=module.time_maa_w2.device).uniform_(-1e-4, 1e-4) | |
TIME_DECAY_EXTRA_DIM = 64 | |
module.time_decay_w1.data = torch.zeros(hidden_size, TIME_DECAY_EXTRA_DIM, dtype=module.time_decay_w1.dtype, device=module.time_decay_w1.device).uniform_(-1e-4, 1e-4) | |
module.time_decay_w2.data = torch.zeros(TIME_DECAY_EXTRA_DIM, attention_hidden_size, dtype=module.time_decay_w2.dtype, device=module.time_decay_w2.device).uniform_(-1e-4, 1e-4) | |
module.time_decay.data = decay_speed.reshape(num_heads, head_size) | |
module.time_faaaa.data = tmp.reshape(num_heads, head_size) | |
elif isinstance(module, Rwkv6FeedForward): | |
layer_id = module.layer_id | |
num_hidden_layers = module.config.num_hidden_layers | |
hidden_size = module.config.hidden_size | |
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0 | |
time_weight = torch.tensor( | |
[i / hidden_size for i in range(hidden_size)], | |
dtype=module.time_maa_k.dtype, | |
device=module.time_maa_k.device, | |
) | |
time_weight = time_weight[None, None, :] | |
with torch.no_grad(): | |
module.time_maa_k.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0) | |
module.time_maa_r.data = 1.0 - torch.pow(time_weight, ratio_1_to_almost0) | |
class Rwkv6Output(ModelOutput): | |
""" | |
Class for the RWKV model outputs. | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): | |
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to | |
avoid providing the old `input_ids`. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of | |
the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in | |
the self-attention heads. | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
state: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
class Rwkv6CausalLMOutput(ModelOutput): | |
""" | |
Base class for causal language model (or autoregressive) outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
state (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`): | |
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to | |
avoid providing the old `input_ids`. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of | |
the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in | |
the self-attention heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
state: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
RWKV6_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) | |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
general usage and behavior. | |
Parameters: | |
config ([`Rwkv6Config`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
RWKV6_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | |
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else | |
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input | |
sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their | |
past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See | |
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input | |
IDs?](../glossary#input-ids) | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
state (tuple of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`, *optional*): | |
If passed along, the model uses the previous state in all the blocks (which will give the output for the | |
`input_ids` provided as if the model add `state_input_ids + input_ids` as context). | |
use_cache (`bool`, *optional*): | |
If set to `True`, the last state is returned and can be used to quickly generate the next logits. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class Rwkv6Model(Rwkv6PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) | |
self.blocks = nn.ModuleList([Rwkv6Block(config, layer_id=idx) for idx in range(config.num_hidden_layers)]) | |
self.ln_out = nn.LayerNorm(config.hidden_size) | |
self.layers_are_rescaled = False | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embeddings | |
def set_input_embeddings(self, new_embeddings): | |
self.embeddings = new_embeddings | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, # noqa | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
state: Optional[List[torch.FloatTensor]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Rwkv6Output]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
# FIXME - training is supportable with the CUDA code | |
# rwkv6 only support inference in huggingface. | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if self.training == self.layers_are_rescaled and ( | |
self.embeddings.weight.dtype == torch.float16 or self.embeddings.weight.dtype == torch.bfloat16 | |
): | |
self._rescale_layers() | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is None and inputs_embeds is None: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if inputs_embeds is None: | |
inputs_embeds = self.embeddings(input_ids) | |
if state is None: | |
state = [] | |
head_size = self.config.head_size | |
num_heads = self.config.attention_hidden_size // head_size | |
state_attn_x = torch.zeros( | |
(inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers), | |
dtype=inputs_embeds.dtype, | |
requires_grad=False, | |
device=inputs_embeds.device, | |
).contiguous() | |
state_attn_kv = torch.zeros( | |
( | |
inputs_embeds.size(0), | |
num_heads, | |
head_size, | |
head_size, | |
self.config.num_hidden_layers, | |
), | |
dtype=torch.float32, | |
requires_grad=False, | |
device=inputs_embeds.device, | |
).contiguous() | |
state_ffn_x = torch.zeros( | |
(inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers), | |
dtype=inputs_embeds.dtype, | |
requires_grad=False, | |
device=inputs_embeds.device, | |
).contiguous() | |
state.append(state_attn_x) | |
state.append(state_attn_kv) | |
state.append(state_ffn_x) | |
seq_mode = inputs_embeds.shape[1] > 1 | |
hidden_states = inputs_embeds | |
all_self_attentions = () if output_attentions else None | |
all_hidden_states = () if output_hidden_states else None | |
for idx, block in enumerate(self.blocks): | |
hidden_states, state, attentions = block( | |
hidden_states, state=state, use_cache=use_cache, output_attentions=output_attentions, seq_mode=seq_mode | |
) | |
if ( | |
self.layers_are_rescaled | |
and self.config.rescale_every > 0 | |
and (idx + 1) % self.config.rescale_every == 0 | |
): | |
hidden_states = hidden_states / 2 | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if output_attentions: | |
all_self_attentions = all_self_attentions + (attentions,) | |
hidden_states = self.ln_out(hidden_states) | |
if output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states,) | |
if not return_dict: | |
return (hidden_states, state, all_hidden_states, all_self_attentions) | |
return Rwkv6Output( | |
last_hidden_state=hidden_states, | |
state=state, | |
hidden_states=all_hidden_states, # None | |
attentions=all_self_attentions, # None | |
) | |
def _rescale_layers(self): | |
# Layers should be rescaled for inference only. | |
if self.layers_are_rescaled == (not self.training): | |
return | |
if self.config.rescale_every > 0: | |
with torch.no_grad(): | |
for block_id, block in enumerate(self.blocks): | |
if self.training: | |
block.attention.output.weight.mul_(2 ** int(block_id // self.config.rescale_every)) | |
block.feed_forward.value.weight.mul_(2 ** int(block_id // self.config.rescale_every)) | |
else: | |
# Deal with quantization statistics | |
if hasattr(block.attention.output.weight, "SCB"): | |
block.attention.output.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every)) | |
block.feed_forward.value.weight.SCB.div_(2 ** int(block_id // self.config.rescale_every)) | |
elif hasattr(block.attention.output.weight, "quant_state"): | |
self._bnb_4bit_dequantize_and_rescale(block.attention.output, block_id) | |
self._bnb_4bit_dequantize_and_rescale(block.feed_forward.value, block_id) | |
else: | |
block.attention.output.weight.div_(2 ** int(block_id // self.config.rescale_every)) | |
block.feed_forward.value.weight.div_(2 ** int(block_id // self.config.rescale_every)) | |
self.layers_are_rescaled = not self.training | |
def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id): | |
r""" | |
Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will | |
be quantized again. | |
""" | |
if not is_bitsandbytes_available(): | |
raise ImportError("Please install bitsandbytes to use this method.") | |
import bitsandbytes as bnb | |
dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state) | |
dequant_weights.div_(2 ** int(block_id // self.config.rescale_every)) | |
# re-quantize the model: | |
# we need to put it first on CPU then back to the device | |
# this will create an overhead :/ | |
# We set requires_grad=False as we cannot compute gradients on top of 4bit parameters anyway and to avoid | |
# bugs with bnb | |
quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device) | |
setattr(target_layer, "weight", quant_weight) | |
# copied from HuggingFace https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py | |
class Rwkv6ForCausalLM(Rwkv6PreTrainedModel): | |
_tied_weights_keys = ["head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.rwkv = Rwkv6Model(config) | |
self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.head | |
def set_output_embeddings(self, new_embeddings): | |
self.head = new_embeddings | |
def prepare_inputs_for_generation(self, input_ids, state=None, inputs_embeds=None, **kwargs): | |
# only last token for inputs_ids if the state is passed along. | |
if state is not None: | |
input_ids = input_ids[:, -1].unsqueeze(-1) | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and state is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs["state"] = state | |
return model_inputs | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
state: Optional[List[torch.FloatTensor]] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Rwkv6CausalLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.rwkv( | |
input_ids, | |
inputs_embeds=inputs_embeds, | |
state=state, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.head(hidden_states) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return Rwkv6CausalLMOutput( | |
loss=loss, | |
logits=logits, | |
state=outputs.state, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |