Spaces:
Sleeping
Sleeping
# Copyright (c) 2024, Tri Dao. | |
import sys | |
import warnings | |
import os | |
import re | |
import shutil | |
import ast | |
from pathlib import Path | |
from packaging.version import parse, Version | |
import platform | |
from setuptools import setup, find_packages | |
import subprocess | |
import urllib.request | |
import urllib.error | |
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel | |
import torch | |
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME, HIP_HOME | |
with open("README.md", "r", encoding="utf-8") as fh: | |
long_description = fh.read() | |
# ninja build does not work unless include_dirs are abs path | |
this_dir = os.path.dirname(os.path.abspath(__file__)) | |
PACKAGE_NAME = "causal_conv1d" | |
BASE_WHEEL_URL = "https://github.com/Dao-AILab/causal-conv1d/releases/download/{tag_name}/{wheel_name}" | |
# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels | |
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation | |
FORCE_BUILD = os.getenv("CAUSAL_CONV1D_FORCE_BUILD", "FALSE") == "TRUE" | |
SKIP_CUDA_BUILD = os.getenv("CAUSAL_CONV1D_SKIP_CUDA_BUILD", "FALSE") == "TRUE" | |
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI | |
FORCE_CXX11_ABI = os.getenv("CAUSAL_CONV1D_FORCE_CXX11_ABI", "FALSE") == "TRUE" | |
def get_platform(): | |
""" | |
Returns the platform name as used in wheel filenames. | |
""" | |
if sys.platform.startswith("linux"): | |
return "linux_x86_64" | |
elif sys.platform == "darwin": | |
mac_version = ".".join(platform.mac_ver()[0].split(".")[:2]) | |
return f"macosx_{mac_version}_x86_64" | |
elif sys.platform == "win32": | |
return "win_amd64" | |
else: | |
raise ValueError("Unsupported platform: {}".format(sys.platform)) | |
def get_hip_version(rocm_dir): | |
hipcc_bin = "hipcc" if rocm_dir is None else os.path.join(rocm_dir, "bin", "hipcc") | |
try: | |
raw_output = subprocess.check_output( | |
[hipcc_bin, "--version"], universal_newlines=True | |
) | |
except Exception as e: | |
print( | |
f"hip installation not found: {e} ROCM_PATH={os.environ.get('ROCM_PATH')}" | |
) | |
return None, None | |
for line in raw_output.split("\n"): | |
if "HIP version" in line: | |
rocm_version = parse(line.split()[-1].replace("-", "+")) # local version is not parsed correctly | |
return line, rocm_version | |
return None, None | |
def get_torch_hip_version(): | |
if torch.version.hip: | |
return parse(torch.version.hip.split()[-1].replace("-", "+")) | |
else: | |
return None | |
def check_if_hip_home_none(global_option: str) -> None: | |
if HIP_HOME is not None: | |
return | |
# warn instead of error because user could be downloading prebuilt wheels, so hipcc won't be necessary | |
# in that case. | |
warnings.warn( | |
f"{global_option} was requested, but hipcc was not found. Are you sure your environment has hipcc available?" | |
) | |
def check_if_cuda_home_none(global_option: str) -> None: | |
if CUDA_HOME is not None: | |
return | |
# warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary | |
# in that case. | |
warnings.warn( | |
f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? " | |
"If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, " | |
"only images whose names contain 'devel' will provide nvcc." | |
) | |
def append_nvcc_threads(nvcc_extra_args): | |
return nvcc_extra_args + ["--threads", "4"] | |
cmdclass = {} | |
ext_modules = [] | |
HIP_BUILD = bool(torch.version.hip) | |
if not SKIP_CUDA_BUILD: | |
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__)) | |
TORCH_MAJOR = int(torch.__version__.split(".")[0]) | |
TORCH_MINOR = int(torch.__version__.split(".")[1]) | |
cc_flag = [] | |
if HIP_BUILD: | |
check_if_hip_home_none(PACKAGE_NAME) | |
rocm_home = os.getenv("ROCM_PATH") | |
_, hip_version = get_hip_version(rocm_home) | |
if HIP_HOME is not None: | |
if hip_version < Version("6.0"): | |
raise RuntimeError( | |
f"{PACKAGE_NAME} is only supported on ROCm 6.0 and above. " | |
"Note: make sure HIP has a supported version by running hipcc --version." | |
) | |
if hip_version == Version("6.0"): | |
warnings.warn( | |
f"{PACKAGE_NAME} requires a patch to be applied when running on ROCm 6.0. " | |
"Refer to the README.md for detailed instructions.", | |
UserWarning | |
) | |
cc_flag.append("-DBUILD_PYTHON_PACKAGE") | |
else: | |
cc_flag.append("-gencode") | |
cc_flag.append("arch=compute_53,code=sm_53") | |
cc_flag.append("-gencode") | |
cc_flag.append("arch=compute_62,code=sm_62") | |
cc_flag.append("-gencode") | |
cc_flag.append("arch=compute_70,code=sm_70") | |
cc_flag.append("-gencode") | |
cc_flag.append("arch=compute_72,code=sm_72") | |
cc_flag.append("-gencode") | |
cc_flag.append("arch=compute_80,code=sm_80") | |
cc_flag.append("-gencode") | |
cc_flag.append("arch=compute_87,code=sm_87") | |
# HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as | |
# torch._C._GLIBCXX_USE_CXX11_ABI | |
# https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920 | |
if FORCE_CXX11_ABI: | |
torch._C._GLIBCXX_USE_CXX11_ABI = True | |
if HIP_BUILD: | |
extra_compile_args = { | |
"cxx": ["-O3", "-std=c++17"], | |
} | |
else: | |
extra_compile_args = { | |
"cxx": ["-O3"], | |
} | |
def get_package_version(): | |
with open(Path(this_dir) / "causal_conv1d" / "__init__.py", "r") as f: | |
version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE) | |
public_version = ast.literal_eval(version_match.group(1)) | |
local_version = os.environ.get("CAUSAL_CONV1D_LOCAL_VERSION") | |
if local_version: | |
return f"{public_version}+{local_version}" | |
else: | |
return str(public_version) | |
def get_wheel_url(): | |
# Determine the version numbers that will be used to determine the correct wheel | |
torch_version_raw = parse(torch.__version__) | |
if HIP_BUILD: | |
# We're using the HIP version used to build torch, not the one currently installed | |
torch_hip_version = get_torch_hip_version() | |
hip_version = f"{torch_hip_version.major}{torch_hip_version.minor}" | |
gpu_compute_version = hip_version if HIP_BUILD else cuda_version | |
cuda_or_hip = "hip" if HIP_BUILD else "cu" | |
python_version = f"cp{sys.version_info.major}{sys.version_info.minor}" | |
platform_name = get_platform() | |
causal_conv1d_version = get_package_version() | |
torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}" | |
cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper() | |
# Determine wheel URL based on CUDA version, torch version, python version and OS | |
wheel_filename = f"{PACKAGE_NAME}-{causal_conv1d_version}+{cuda_or_hip}{gpu_compute_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl" | |
wheel_url = BASE_WHEEL_URL.format( | |
tag_name=f"v{causal_conv1d_version}", wheel_name=wheel_filename | |
) | |
return wheel_url, wheel_filename | |
class CachedWheelsCommand(_bdist_wheel): | |
""" | |
The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot | |
find an existing wheel (which is currently the case for all installs). We use | |
the environment parameters to detect whether there is already a pre-built version of a compatible | |
wheel available and short-circuits the standard full build pipeline. | |
""" | |
def run(self): | |
if FORCE_BUILD: | |
return super().run() | |
wheel_url, wheel_filename = get_wheel_url() | |
print("Guessing wheel URL: ", wheel_url) | |
try: | |
urllib.request.urlretrieve(wheel_url, wheel_filename) | |
# Make the archive | |
# Lifted from the root wheel processing command | |
# https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85 | |
if not os.path.exists(self.dist_dir): | |
os.makedirs(self.dist_dir) | |
impl_tag, abi_tag, plat_tag = self.get_tag() | |
archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}" | |
wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl") | |
print("Raw wheel path", wheel_path) | |
shutil.move(wheel_filename, wheel_path) | |
except urllib.error.HTTPError: | |
print("Precompiled wheel not found. Building from source...") | |
# If the wheel could not be downloaded, build from source | |
super().run() | |
setup( | |
name=PACKAGE_NAME, | |
version=get_package_version(), | |
packages=find_packages( | |
exclude=( | |
"build", | |
"csrc", | |
"include", | |
"tests", | |
"dist", | |
"docs", | |
"benchmarks", | |
"causal_conv1d.egg-info", | |
) | |
), | |
author="Tri Dao", | |
author_email="[email protected]", | |
description="Causal depthwise conv1d in CUDA, with a PyTorch interface", | |
long_description=long_description, | |
long_description_content_type="text/markdown", | |
url="https://github.com/Dao-AILab/causal-conv1d", | |
classifiers=[ | |
"Programming Language :: Python :: 3", | |
"License :: OSI Approved :: BSD License", | |
"Operating System :: Unix", | |
], | |
ext_modules=ext_modules, | |
cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": BuildExtension} | |
if ext_modules | |
else { | |
"bdist_wheel": CachedWheelsCommand, | |
}, | |
python_requires=">=3.8", | |
install_requires=[ | |
"torch", | |
"packaging", | |
"ninja", | |
], | |
) | |