cpu-casuallm / causal-conv1d /csrc /causal_conv1d_fwd.cu
Somunia's picture
Upload 28 files
8b19012 verified
/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#ifndef USE_ROCM
#include <cub/block/block_load.cuh>
#include <cub/block/block_store.cuh>
#else
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "causal_conv1d.h"
#include "causal_conv1d_common.h"
#include "static_switch.h"
template<int kNThreads_, int kWidth_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
struct Causal_conv1d_fwd_kernel_traits {
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static constexpr int kWidth = kWidth_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
static_assert(kWidth <= kNElts);
static constexpr bool kIsVecLoad = kIsVecLoad_;
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
static constexpr int kSmemIOSize = kIsVecLoad
? 0
: custom_max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts;
static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize;
};
template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_fwd_kernel(ConvParamsBase params) {
constexpr int kWidth = Ktraits::kWidth;
constexpr int kNThreads = Ktraits::kNThreads;
constexpr int kNElts = Ktraits::kNElts;
static constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
using input_t = typename Ktraits::input_t;
using vec_t = typename Ktraits::vec_t;
using weight_t = typename Ktraits::weight_t;
// Shared memory.
extern __shared__ char smem_[];
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);
const int tidx = threadIdx.x;
const int batch_id = blockIdx.x;
const int channel_id = blockIdx.y;
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
+ channel_id * params.x_c_stride;
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ channel_id * params.out_c_stride;
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
// Thread 0 will load the last elements of the previous chunk, so we initialize those to 0.
if (tidx == 0) {
input_t zeros[kNElts] = {0};
smem_exchange[kNThreads - 1] = reinterpret_cast<vec_t *>(zeros)[0];
}
float weight_vals[kWidth];
#pragma unroll
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
constexpr int kChunkSize = kNThreads * kNElts;
const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize;
for (int chunk = 0; chunk < n_chunks; ++chunk) {
input_t x_vals_load[2 * kNElts] = {0};
if constexpr(kIsVecLoad) {
typename Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts);
} else {
__syncthreads();
typename Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize);
}
x += kChunkSize;
__syncthreads();
// Thread kNThreads - 1 don't write yet, so that thread 0 can read
// the last elements of the previous chunk.
if (tidx < kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
__syncthreads();
reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[tidx > 0 ? tidx - 1 : kNThreads - 1];
__syncthreads();
// Now thread kNThreads - 1 can write the last elements of the current chunk.
if (tidx == kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
float x_vals[2 * kNElts];
#pragma unroll
for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }
float out_vals[kNElts];
#pragma unroll
for (int i = 0; i < kNElts; ++i) {
out_vals[i] = bias_val;
#pragma unroll
for (int w = 0; w < kWidth; ++w) {
out_vals[i] += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
}
}
if (params.silu_activation) {
#pragma unroll
for (int i = 0; i < kNElts; ++i) {
out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i]));
}
}
input_t out_vals_store[kNElts];
#pragma unroll
for (int i = 0; i < kNElts; ++i) { out_vals_store[i] = out_vals[i]; }
if constexpr(kIsVecLoad) {
typename Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(out), reinterpret_cast<vec_t (&)[1]>(out_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts);
} else {
typename Ktraits::BlockStoreT(smem_store).Store(out, out_vals_store, params.seqlen - chunk * kChunkSize);
}
out += kChunkSize;
}
}
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_fwd_launch(ConvParamsBase &params, cudaStream_t stream) {
static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] {
using Ktraits = Causal_conv1d_fwd_kernel_traits<kNThreads, kWidth, kIsVecLoad, input_t, weight_t>;
constexpr int kSmemSize = Ktraits::kSmemSize;
dim3 grid(params.batch, params.dim);
auto kernel = &causal_conv1d_fwd_kernel<Ktraits>;
if (kSmemSize >= 48 * 1024) {
#ifndef USE_ROCM
C10_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
#else
// There is a slight signature discrepancy in HIP and CUDA "FuncSetAttribute" function.
C10_CUDA_CHECK(cudaFuncSetAttribute(
(void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
std::cerr << "Warning (causal_conv1d fwd launch): attempting to set maxDynamicSharedMemorySize on an AMD GPU which is currently a non-op (in ROCm versions <= 6.1). This might lead to undefined behavior. \n" << std::endl;
#endif
}
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
}
template<typename input_t, typename weight_t>
void causal_conv1d_fwd_cuda(ConvParamsBase &params, cudaStream_t stream) {
if (params.width == 2) {
causal_conv1d_fwd_launch<128, 2, input_t, weight_t>(params, stream);
} else if (params.width == 3) {
causal_conv1d_fwd_launch<128, 3, input_t, weight_t>(params, stream);
} else if (params.width == 4) {
causal_conv1d_fwd_launch<128, 4, input_t, weight_t>(params, stream);
}
}
template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
struct Causal_conv1d_channellast_fwd_kernel_traits {
// The cache line is 128 bytes, and we try to read 16 bytes per thread.
// So we have 8 threads per "row", so 32 or 64 elements in the channel dimension.
// That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128
// threads). Each each load is 16 x 32|64 elements in the L x C dimensions.
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static_assert(kNThreads % 32 == 0);
static constexpr int kNWarps = kNThreads / 32;
static constexpr int kWidth = kWidth_;
static constexpr int kChunkSizeL = kChunkSizeL_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
static constexpr int kNEltsPerRow = 128 / kNBytes;
static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts; // Always 8 for now
static_assert(kNThreadsPerRow * kNBytes * kNElts == 128);
static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow; // Always 4 for now
static_assert(kNColsPerWarp * kNThreadsPerRow == 32);
static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps;
static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad;
static_assert(kNLoads * kNColsPerLoad == kChunkSizeL);
static constexpr bool kIsVecLoad = kIsVecLoad_;
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
// using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
// using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
// static constexpr int kSmemSize = std::max({sizeof(typename BlockLoadT::TempStorage),
// sizeof(typename BlockStoreT::TempStorage)});
// static constexpr int kSmemSize = kChunkSizeL * kNEltsPerRow * kNBytes;
};
template<typename Ktraits, bool kHasSeqIdx>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_channellast_fwd_kernel(ConvParamsBase params) {
constexpr int kWidth = Ktraits::kWidth;
constexpr int kNThreads = Ktraits::kNThreads;
constexpr int kNElts = Ktraits::kNElts;
constexpr int kNWarp = Ktraits::kNWarps;
constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow;
constexpr int kLPerLoad = Ktraits::kNColsPerLoad;
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
using input_t = typename Ktraits::input_t;
using vec_t = typename Ktraits::vec_t;
using weight_t = typename Ktraits::weight_t;
// Shared memory.
__shared__ input_t x_smem[kWidth - 1 + kChunkSizeL][kChunkSizeC + kNElts];
const int batch_id = blockIdx.x;
const int chunk_l_id = blockIdx.y;
const int chunk_c_id = blockIdx.z;
const int tid = threadIdx.x;
const int l_idx = tid / kNThreadsPerC;
const int c_idx = tid % kNThreadsPerC;
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
+ (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr)
+ chunk_c_id * kChunkSizeC * params.weight_c_stride;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ (chunk_l_id * kChunkSizeL + l_idx) * params.out_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
int *seq_idx = !kHasSeqIdx ? nullptr : reinterpret_cast<int *>(params.seq_idx_ptr)
+ batch_id * params.seqlen + chunk_l_id * kChunkSizeL;
input_t *initial_states = params.initial_states_ptr == nullptr || chunk_l_id > 0 ? nullptr
: reinterpret_cast<input_t *>(params.initial_states_ptr) + batch_id * params.initial_states_batch_stride + l_idx * params.initial_states_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
// The last L-chunk will also have enough info to write to final states, since it also contain a few x values
// from the previous L-chunk.
input_t *final_states = params.final_states_ptr == nullptr || chunk_l_id < gridDim.y - 1 ? nullptr
: reinterpret_cast<input_t *>(params.final_states_ptr) + batch_id * params.final_states_batch_stride + l_idx * params.final_states_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
#pragma unroll
for (int l = 0; l < Ktraits::kNLoads; ++l) {
input_t x_vals_load[kNElts] = {0};
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride);
}
reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
}
// Load the elements from the previous chunk that are needed for convolution.
if (l_idx < kWidth - 1) {
input_t x_vals_load[kNElts] = {0};
if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride);
} else if (initial_states != nullptr
&& chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < 0
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(initial_states);
}
reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
}
__syncthreads();
if (final_states != nullptr
&& l_idx < kWidth - 1
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
// x_smem[0] contains element at index chunk_l_id * kChunkSizeL - (kWidth - 1)
// So last few elements (index params.seqlen - kWidth + 1 + l_idx) are stored in x_smem[params.seqlen - kWidth + 1 + l_idx - (chunk_l_id * kChunkSizeL - kWidth + 1)][c_idx]
*reinterpret_cast<vec_t *>(final_states) = reinterpret_cast<vec_t *>(x_smem[params.seqlen + l_idx - chunk_l_id * kChunkSizeL])[c_idx];
}
constexpr int kLPerThread = constexpr_min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL);
static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC);
constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread;
static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL);
// kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity
static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0);
static_assert((kLPerThread & (kLPerThread - 1)) == 0);
static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0);
static_assert(kNThreadsPerRow <= 32);
const int row_idx = tid / kNThreadsPerRow;
const int col_idx = tid % kNThreadsPerRow;
float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]);
float weight_vals[kWidth] = {0};
if (chunk_c_id * kChunkSizeC + row_idx < params.dim) {
#pragma unroll
for (int w = 0; w < kWidth; ++w) {
weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride];
}
}
float x_vals[kWidth - 1 + kLPerThread];
#pragma unroll
for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
}
int seq_idx_thread[kWidth - 1 + kLPerThread];
if constexpr (kHasSeqIdx) {
#pragma unroll
for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
seq_idx_thread[i] = chunk_l_id * kChunkSizeL + col_idx * kLPerThread + i - (kWidth - 1) >= 0 ? seq_idx[col_idx * kLPerThread + i - (kWidth - 1)] : -1;
}
}
float out_vals[kLPerThread];
#pragma unroll
for (int i = 0; i < kLPerThread; ++i) {
out_vals[i] = bias_val;
const int seq_idx_cur = !kHasSeqIdx ? 0 : seq_idx_thread[i + kWidth - 1];
#pragma unroll
for (int w = 0; w < kWidth; ++w) {
if constexpr (!kHasSeqIdx) {
out_vals[i] += weight_vals[w] * x_vals[i + w];
} else {
out_vals[i] += seq_idx_thread[i + w] == seq_idx_cur ? weight_vals[w] * x_vals[i + w] : 0.f;
}
}
if (params.silu_activation) {out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i])); }
}
__syncthreads();
#pragma unroll
for (int i = 0; i < kLPerThread; ++i) { x_smem[col_idx * kLPerThread + i][row_idx] = out_vals[i]; }
__syncthreads();
#pragma unroll
for (int l = 0; l < Ktraits::kNLoads; ++l) {
input_t out_vals_store[kNElts];
reinterpret_cast<vec_t *>(out_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l * kLPerLoad + l_idx])[c_idx];
if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
&& chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
*reinterpret_cast<vec_t *>(out + l * kLPerLoad * params.out_l_stride) = reinterpret_cast<vec_t *>(out_vals_store)[0];
}
}
}
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_channellast_fwd_launch(ConvParamsBase &params, cudaStream_t stream) {
BOOL_SWITCH(params.seq_idx_ptr != nullptr, kHasSeqIdx, [&] {
using Ktraits = Causal_conv1d_channellast_fwd_kernel_traits<kNThreads, kWidth, 64, true, input_t, weight_t>;
// constexpr int kSmemSize = Ktraits::kSmemSize;
constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL;
const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC;
dim3 grid(params.batch, n_chunks_L, n_chunks_C);
dim3 block(Ktraits::kNThreads);
auto kernel = &causal_conv1d_channellast_fwd_kernel<Ktraits, kHasSeqIdx>;
// if (kSmemSize >= 48 * 1024) {
// C10_CUDA_CHECK(cudaFuncSetAttribute(
// kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
// }
// kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
}
template<typename input_t, typename weight_t>
void causal_conv1d_channellast_fwd_cuda(ConvParamsBase &params, cudaStream_t stream) {
if (params.width == 2) {
causal_conv1d_channellast_fwd_launch<128, 2, input_t, weight_t>(params, stream);
} else if (params.width == 3) {
causal_conv1d_channellast_fwd_launch<128, 3, input_t, weight_t>(params, stream);
} else if (params.width == 4) {
causal_conv1d_channellast_fwd_launch<128, 4, input_t, weight_t>(params, stream);
}
}
template void causal_conv1d_fwd_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::Half, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::BFloat16, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<float, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<float, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::Half, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, float>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<float, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<float, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);