cpu-casuallm / mamba /tests /test_generation.py
Somunia's picture
Upload 116 files
306b4ac verified
import torch
import torch.nn.functional as F
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
from mamba_ssm.models.config_mamba import MambaConfig
from mamba_ssm.utils.generation import InferenceParams
import pytest
from einops import rearrange, repeat
def test_generation():
batch = 3
seqlen = 20
device = "cuda"
dtype = torch.float16
config = MambaConfig(
d_model=1024,
n_layer=4,
vocab_size=50277,
ssm_cfg=dict(layer="Mamba2"),
rms_norm=True,
residual_in_fp32=True,
fused_add_norm=True,
pad_vocab_size_multiple=16,
)
torch.manual_seed(2357)
model = MambaLMHeadModel(config, device=device, dtype=dtype)
x = torch.randint(0, 1000, (batch, seqlen), device=device, dtype=torch.long)
out_ref = model(x).logits
prompt_len = seqlen // 2
out = model.generate(
input_ids = x[:, :prompt_len], max_length=seqlen, output_scores=True, return_dict_in_generate=True,
cg=True, # Can turn off CUDA graph for easier debugging
# instead of sampling, we take output tokens from x, to get logits for testing
# For actual generation, don't pass in teacher_outputs
teacher_outputs=x,
)
out_scores = torch.stack(out.scores, dim=1)
print(f"Max diff: {(out_scores - out_ref[:, prompt_len - 1: -1]).abs().max()}")
assert torch.allclose(out_scores, out_ref[:, prompt_len - 1: -1], rtol=1e-3, atol=1e-2)
def test_generation_varlen():
seqlens = [170, 65, 100]
genlen = 20
total_seqlen = sum(seqlens)
device = "cuda"
dtype = torch.float16
config = MambaConfig(
d_model=1024,
n_layer=4,
vocab_size=50277,
ssm_cfg=dict(layer="Mamba2"),
rms_norm=True,
residual_in_fp32=True,
fused_add_norm=True,
pad_vocab_size_multiple=16,
)
torch.manual_seed(2357)
model = MambaLMHeadModel(config, device=device, dtype=dtype)
xs = [torch.randint(0, 1000, (1, seqlen), device=device, dtype=torch.long) for seqlen in seqlens]
# Reference 1: Forward pass with seq_idx
x = torch.cat(xs, dim=1)
seq_idx = torch.cat([torch.full((ids.shape[1],), i, dtype=torch.int32, device=device)
for i, ids in enumerate(xs)], dim=0).unsqueeze(0)
cu_seqlens = F.pad(torch.tensor(seqlens, device=device, dtype=torch.int32).cumsum(dim=0), (1, 0))
out_ref = model(x, seq_idx=seq_idx).logits
# Only take the last @genlen logits of each sequence
out_ref = torch.cat([out_ref[:, cu_seqlens[i + 1] - genlen - 1:cu_seqlens[i + 1] - 1]
for i in range(len(seqlens))], dim=0)
# Reference 2: Generate the last @genlen tokens of each sequence in a for loop
out_loop = []
for input_ids in xs:
out = model.generate(
input_ids=input_ids[:, :-genlen], max_length=input_ids.shape[1], output_scores=True,
return_dict_in_generate=True, cg=True, teacher_outputs=input_ids,
).scores
out_loop.append(torch.stack(out, dim=1))
out_loop = torch.cat(out_loop, dim=0)
print(f"Max diff between ref1 and ref2: {(out_loop - out_ref).abs().max()}")
# Varlen generation
input_ids = torch.cat([ids[:, :-genlen] for ids in xs], dim=1)
prompt_seqlens = [seqlen - genlen for seqlen in seqlens]
cu_seqlens = F.pad(torch.tensor(prompt_seqlens, device=device, dtype=torch.int32).cumsum(dim=0), (1, 0))
seq_idx = torch.cat([torch.full((seqlen,), i, dtype=torch.int32, device=device)
for i, seqlen in enumerate(prompt_seqlens)], dim=0).unsqueeze(0)
inference_params = InferenceParams(max_seqlen=2048, max_batch_size=len(seqlens))
scores, sequences = [], []
# Both seq_idx and cu_seqlens must be passed in for varlen generation
logits = model(input_ids, inference_params=inference_params, seq_idx=seq_idx, cu_seqlens=cu_seqlens).logits
logits = rearrange(logits[0, cu_seqlens[1:] - 1], "b d -> b 1 d")
scores.append(logits)
# In practice we should sample. In this case we take from the teacher_output for testing
sampled_tokens = rearrange(torch.stack([ids[0, -genlen] for ids in xs], dim=0), "b -> b 1")
sequences.append(sampled_tokens)
for i in range(1, genlen):
inference_params.seqlen_offset += 1
logits = model(sampled_tokens, inference_params=inference_params, num_last_tokens=1).logits
scores.append(logits)
# In practice we should sample. In this case we take from the teacher_output for testing
sampled_tokens = rearrange(torch.stack([ids[0, -genlen + i] for ids in xs], dim=0), "b -> b 1")
sequences.append(sampled_tokens)
out_varlen = torch.cat(scores, dim=1)
print(f"Max diff: {(out_varlen - out_ref).abs().max()}")
assert (out_varlen - out_ref).abs().max() < 2 * (out_loop - out_ref).abs().max()