Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel | |
from mamba_ssm.models.config_mamba import MambaConfig | |
from mamba_ssm.utils.generation import InferenceParams | |
import pytest | |
from einops import rearrange, repeat | |
def test_generation(): | |
batch = 3 | |
seqlen = 20 | |
device = "cuda" | |
dtype = torch.float16 | |
config = MambaConfig( | |
d_model=1024, | |
n_layer=4, | |
vocab_size=50277, | |
ssm_cfg=dict(layer="Mamba2"), | |
rms_norm=True, | |
residual_in_fp32=True, | |
fused_add_norm=True, | |
pad_vocab_size_multiple=16, | |
) | |
torch.manual_seed(2357) | |
model = MambaLMHeadModel(config, device=device, dtype=dtype) | |
x = torch.randint(0, 1000, (batch, seqlen), device=device, dtype=torch.long) | |
out_ref = model(x).logits | |
prompt_len = seqlen // 2 | |
out = model.generate( | |
input_ids = x[:, :prompt_len], max_length=seqlen, output_scores=True, return_dict_in_generate=True, | |
cg=True, # Can turn off CUDA graph for easier debugging | |
# instead of sampling, we take output tokens from x, to get logits for testing | |
# For actual generation, don't pass in teacher_outputs | |
teacher_outputs=x, | |
) | |
out_scores = torch.stack(out.scores, dim=1) | |
print(f"Max diff: {(out_scores - out_ref[:, prompt_len - 1: -1]).abs().max()}") | |
assert torch.allclose(out_scores, out_ref[:, prompt_len - 1: -1], rtol=1e-3, atol=1e-2) | |
def test_generation_varlen(): | |
seqlens = [170, 65, 100] | |
genlen = 20 | |
total_seqlen = sum(seqlens) | |
device = "cuda" | |
dtype = torch.float16 | |
config = MambaConfig( | |
d_model=1024, | |
n_layer=4, | |
vocab_size=50277, | |
ssm_cfg=dict(layer="Mamba2"), | |
rms_norm=True, | |
residual_in_fp32=True, | |
fused_add_norm=True, | |
pad_vocab_size_multiple=16, | |
) | |
torch.manual_seed(2357) | |
model = MambaLMHeadModel(config, device=device, dtype=dtype) | |
xs = [torch.randint(0, 1000, (1, seqlen), device=device, dtype=torch.long) for seqlen in seqlens] | |
# Reference 1: Forward pass with seq_idx | |
x = torch.cat(xs, dim=1) | |
seq_idx = torch.cat([torch.full((ids.shape[1],), i, dtype=torch.int32, device=device) | |
for i, ids in enumerate(xs)], dim=0).unsqueeze(0) | |
cu_seqlens = F.pad(torch.tensor(seqlens, device=device, dtype=torch.int32).cumsum(dim=0), (1, 0)) | |
out_ref = model(x, seq_idx=seq_idx).logits | |
# Only take the last @genlen logits of each sequence | |
out_ref = torch.cat([out_ref[:, cu_seqlens[i + 1] - genlen - 1:cu_seqlens[i + 1] - 1] | |
for i in range(len(seqlens))], dim=0) | |
# Reference 2: Generate the last @genlen tokens of each sequence in a for loop | |
out_loop = [] | |
for input_ids in xs: | |
out = model.generate( | |
input_ids=input_ids[:, :-genlen], max_length=input_ids.shape[1], output_scores=True, | |
return_dict_in_generate=True, cg=True, teacher_outputs=input_ids, | |
).scores | |
out_loop.append(torch.stack(out, dim=1)) | |
out_loop = torch.cat(out_loop, dim=0) | |
print(f"Max diff between ref1 and ref2: {(out_loop - out_ref).abs().max()}") | |
# Varlen generation | |
input_ids = torch.cat([ids[:, :-genlen] for ids in xs], dim=1) | |
prompt_seqlens = [seqlen - genlen for seqlen in seqlens] | |
cu_seqlens = F.pad(torch.tensor(prompt_seqlens, device=device, dtype=torch.int32).cumsum(dim=0), (1, 0)) | |
seq_idx = torch.cat([torch.full((seqlen,), i, dtype=torch.int32, device=device) | |
for i, seqlen in enumerate(prompt_seqlens)], dim=0).unsqueeze(0) | |
inference_params = InferenceParams(max_seqlen=2048, max_batch_size=len(seqlens)) | |
scores, sequences = [], [] | |
# Both seq_idx and cu_seqlens must be passed in for varlen generation | |
logits = model(input_ids, inference_params=inference_params, seq_idx=seq_idx, cu_seqlens=cu_seqlens).logits | |
logits = rearrange(logits[0, cu_seqlens[1:] - 1], "b d -> b 1 d") | |
scores.append(logits) | |
# In practice we should sample. In this case we take from the teacher_output for testing | |
sampled_tokens = rearrange(torch.stack([ids[0, -genlen] for ids in xs], dim=0), "b -> b 1") | |
sequences.append(sampled_tokens) | |
for i in range(1, genlen): | |
inference_params.seqlen_offset += 1 | |
logits = model(sampled_tokens, inference_params=inference_params, num_last_tokens=1).logits | |
scores.append(logits) | |
# In practice we should sample. In this case we take from the teacher_output for testing | |
sampled_tokens = rearrange(torch.stack([ids[0, -genlen + i] for ids in xs], dim=0), "b -> b 1") | |
sequences.append(sampled_tokens) | |
out_varlen = torch.cat(scores, dim=1) | |
print(f"Max diff: {(out_varlen - out_ref).abs().max()}") | |
assert (out_varlen - out_ref).abs().max() < 2 * (out_loop - out_ref).abs().max() | |