import torch import torch.nn.functional as F from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel from mamba_ssm.models.config_mamba import MambaConfig from mamba_ssm.utils.generation import InferenceParams import pytest from einops import rearrange, repeat def test_generation(): batch = 3 seqlen = 20 device = "cuda" dtype = torch.float16 config = MambaConfig( d_model=1024, n_layer=4, vocab_size=50277, ssm_cfg=dict(layer="Mamba2"), rms_norm=True, residual_in_fp32=True, fused_add_norm=True, pad_vocab_size_multiple=16, ) torch.manual_seed(2357) model = MambaLMHeadModel(config, device=device, dtype=dtype) x = torch.randint(0, 1000, (batch, seqlen), device=device, dtype=torch.long) out_ref = model(x).logits prompt_len = seqlen // 2 out = model.generate( input_ids = x[:, :prompt_len], max_length=seqlen, output_scores=True, return_dict_in_generate=True, cg=True, # Can turn off CUDA graph for easier debugging # instead of sampling, we take output tokens from x, to get logits for testing # For actual generation, don't pass in teacher_outputs teacher_outputs=x, ) out_scores = torch.stack(out.scores, dim=1) print(f"Max diff: {(out_scores - out_ref[:, prompt_len - 1: -1]).abs().max()}") assert torch.allclose(out_scores, out_ref[:, prompt_len - 1: -1], rtol=1e-3, atol=1e-2) def test_generation_varlen(): seqlens = [170, 65, 100] genlen = 20 total_seqlen = sum(seqlens) device = "cuda" dtype = torch.float16 config = MambaConfig( d_model=1024, n_layer=4, vocab_size=50277, ssm_cfg=dict(layer="Mamba2"), rms_norm=True, residual_in_fp32=True, fused_add_norm=True, pad_vocab_size_multiple=16, ) torch.manual_seed(2357) model = MambaLMHeadModel(config, device=device, dtype=dtype) xs = [torch.randint(0, 1000, (1, seqlen), device=device, dtype=torch.long) for seqlen in seqlens] # Reference 1: Forward pass with seq_idx x = torch.cat(xs, dim=1) seq_idx = torch.cat([torch.full((ids.shape[1],), i, dtype=torch.int32, device=device) for i, ids in enumerate(xs)], dim=0).unsqueeze(0) cu_seqlens = F.pad(torch.tensor(seqlens, device=device, dtype=torch.int32).cumsum(dim=0), (1, 0)) out_ref = model(x, seq_idx=seq_idx).logits # Only take the last @genlen logits of each sequence out_ref = torch.cat([out_ref[:, cu_seqlens[i + 1] - genlen - 1:cu_seqlens[i + 1] - 1] for i in range(len(seqlens))], dim=0) # Reference 2: Generate the last @genlen tokens of each sequence in a for loop out_loop = [] for input_ids in xs: out = model.generate( input_ids=input_ids[:, :-genlen], max_length=input_ids.shape[1], output_scores=True, return_dict_in_generate=True, cg=True, teacher_outputs=input_ids, ).scores out_loop.append(torch.stack(out, dim=1)) out_loop = torch.cat(out_loop, dim=0) print(f"Max diff between ref1 and ref2: {(out_loop - out_ref).abs().max()}") # Varlen generation input_ids = torch.cat([ids[:, :-genlen] for ids in xs], dim=1) prompt_seqlens = [seqlen - genlen for seqlen in seqlens] cu_seqlens = F.pad(torch.tensor(prompt_seqlens, device=device, dtype=torch.int32).cumsum(dim=0), (1, 0)) seq_idx = torch.cat([torch.full((seqlen,), i, dtype=torch.int32, device=device) for i, seqlen in enumerate(prompt_seqlens)], dim=0).unsqueeze(0) inference_params = InferenceParams(max_seqlen=2048, max_batch_size=len(seqlens)) scores, sequences = [], [] # Both seq_idx and cu_seqlens must be passed in for varlen generation logits = model(input_ids, inference_params=inference_params, seq_idx=seq_idx, cu_seqlens=cu_seqlens).logits logits = rearrange(logits[0, cu_seqlens[1:] - 1], "b d -> b 1 d") scores.append(logits) # In practice we should sample. In this case we take from the teacher_output for testing sampled_tokens = rearrange(torch.stack([ids[0, -genlen] for ids in xs], dim=0), "b -> b 1") sequences.append(sampled_tokens) for i in range(1, genlen): inference_params.seqlen_offset += 1 logits = model(sampled_tokens, inference_params=inference_params, num_last_tokens=1).logits scores.append(logits) # In practice we should sample. In this case we take from the teacher_output for testing sampled_tokens = rearrange(torch.stack([ids[0, -genlen + i] for ids in xs], dim=0), "b -> b 1") sequences.append(sampled_tokens) out_varlen = torch.cat(scores, dim=1) print(f"Max diff: {(out_varlen - out_ref).abs().max()}") assert (out_varlen - out_ref).abs().max() < 2 * (out_loop - out_ref).abs().max()