Spaces:
Runtime error
Runtime error
SoooSlooow
commited on
Commit
•
8031b06
1
Parent(s):
e8b068a
init commit
Browse files- app.py +175 -0
- data/processed/app_dataset.csv +2 -0
- models/predictions/app_predictions.csv +2 -0
- requirements.txt +0 -0
- src/__init__.py +0 -0
- src/models/__init__.py +0 -0
- src/models/make_predictions.py +41 -0
app.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import random
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import joblib
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
OUTPUT_DATA_PATH = "data/processed/app_dataset.csv"
|
11 |
+
PREDICTIONS_PATH = "models/predictions/app_predictions.csv"
|
12 |
+
UNIQUE_VALUES_PATH = "models/other/unique_column_values.pkl"
|
13 |
+
|
14 |
+
|
15 |
+
def predict(*args: tuple) -> Any:
|
16 |
+
app_df = pd.DataFrame(data=[args], columns=columns, index=[0])
|
17 |
+
app_df.to_csv(OUTPUT_DATA_PATH, index=False)
|
18 |
+
subprocess.run(
|
19 |
+
[
|
20 |
+
"python",
|
21 |
+
"-m",
|
22 |
+
"src.models.make_predictions",
|
23 |
+
"data/processed/app_dataset.csv",
|
24 |
+
"models/final_model.pkl",
|
25 |
+
"models/predictions/app_predictions.csv",
|
26 |
+
],
|
27 |
+
shell=True,
|
28 |
+
)
|
29 |
+
predictions = np.genfromtxt(PREDICTIONS_PATH, delimiter=",", skip_header=1)
|
30 |
+
if predictions[2] == 1:
|
31 |
+
message = "Client is considered bad. Issuance of credit is not recommended."
|
32 |
+
else:
|
33 |
+
message = "Client is considered good. Issuance of credit is allowed."
|
34 |
+
return round(predictions[0], 3), message
|
35 |
+
|
36 |
+
|
37 |
+
columns = (
|
38 |
+
"YEARS_BIRTH",
|
39 |
+
"CODE_GENDER",
|
40 |
+
"AMT_INCOME_TOTAL",
|
41 |
+
"NAME_INCOME_TYPE",
|
42 |
+
"YEARS_EMPLOYED",
|
43 |
+
"OCCUPATION_TYPE",
|
44 |
+
"NAME_EDUCATION_TYPE",
|
45 |
+
"CNT_FAM_MEMBERS",
|
46 |
+
"CNT_CHILDREN",
|
47 |
+
"NAME_FAMILY_STATUS",
|
48 |
+
"FLAG_OWN_CAR",
|
49 |
+
"FLAG_OWN_REALTY",
|
50 |
+
"NAME_HOUSING_TYPE",
|
51 |
+
"FLAG_PHONE",
|
52 |
+
"FLAG_WORK_PHONE",
|
53 |
+
"FLAG_EMAIL",
|
54 |
+
)
|
55 |
+
unique_values = joblib.load(UNIQUE_VALUES_PATH)
|
56 |
+
|
57 |
+
with gr.Blocks() as demo:
|
58 |
+
with gr.Row():
|
59 |
+
with gr.Column():
|
60 |
+
age = gr.Slider(label="Age", minimum=18, maximum=90, step=1, randomize=True)
|
61 |
+
sex = gr.Dropdown(
|
62 |
+
label="Sex",
|
63 |
+
choices=unique_values["CODE_GENDER"],
|
64 |
+
value=lambda: random.choice(unique_values["CODE_GENDER"]),
|
65 |
+
)
|
66 |
+
annual_income = gr.Slider(
|
67 |
+
label="Annual income",
|
68 |
+
minimum=0,
|
69 |
+
maximum=7000000,
|
70 |
+
step=10000,
|
71 |
+
randomize=True,
|
72 |
+
)
|
73 |
+
income_type = gr.Dropdown(
|
74 |
+
label="Income type",
|
75 |
+
choices=unique_values["NAME_INCOME_TYPE"],
|
76 |
+
value=lambda: random.choice(unique_values["NAME_INCOME_TYPE"]),
|
77 |
+
)
|
78 |
+
work_experience = gr.Slider(
|
79 |
+
label="Work experience at current position",
|
80 |
+
minimum=0,
|
81 |
+
maximum=75,
|
82 |
+
step=1,
|
83 |
+
randomize=True,
|
84 |
+
)
|
85 |
+
occupation_type = gr.Dropdown(
|
86 |
+
label="Occupation type",
|
87 |
+
choices=unique_values["OCCUPATION_TYPE"],
|
88 |
+
value=lambda: random.choice(unique_values["OCCUPATION_TYPE"]),
|
89 |
+
)
|
90 |
+
education_type = gr.Dropdown(
|
91 |
+
label="Education type",
|
92 |
+
choices=unique_values["NAME_EDUCATION_TYPE"],
|
93 |
+
value=lambda: random.choice(unique_values["NAME_EDUCATION_TYPE"]),
|
94 |
+
)
|
95 |
+
amount_of_family_members = gr.Slider(
|
96 |
+
label="Amount of family members",
|
97 |
+
minimum=0,
|
98 |
+
maximum=12,
|
99 |
+
step=1,
|
100 |
+
randomize=True,
|
101 |
+
)
|
102 |
+
amount_of_children = gr.Slider(
|
103 |
+
label="Amount of children",
|
104 |
+
minimum=0,
|
105 |
+
maximum=10,
|
106 |
+
step=1,
|
107 |
+
randomize=True,
|
108 |
+
)
|
109 |
+
|
110 |
+
with gr.Column():
|
111 |
+
family_status = gr.Dropdown(
|
112 |
+
label="Family status",
|
113 |
+
choices=unique_values["NAME_FAMILY_STATUS"],
|
114 |
+
value=lambda: random.choice(unique_values["NAME_FAMILY_STATUS"]),
|
115 |
+
)
|
116 |
+
flag_own_car = gr.Dropdown(
|
117 |
+
label="Having a car",
|
118 |
+
choices=unique_values["FLAG_OWN_REALTY"],
|
119 |
+
value=lambda: random.choice(unique_values["FLAG_OWN_REALTY"]),
|
120 |
+
)
|
121 |
+
flag_own_realty = gr.Dropdown(
|
122 |
+
label="Having a realty",
|
123 |
+
choices=unique_values["FLAG_OWN_REALTY"],
|
124 |
+
value=lambda: random.choice(unique_values["FLAG_OWN_REALTY"]),
|
125 |
+
)
|
126 |
+
housing_type = gr.Dropdown(
|
127 |
+
label="Housing type",
|
128 |
+
choices=unique_values["NAME_HOUSING_TYPE"],
|
129 |
+
value=lambda: random.choice(unique_values["NAME_HOUSING_TYPE"]),
|
130 |
+
)
|
131 |
+
flag_phone = gr.Dropdown(
|
132 |
+
label="Having a phone",
|
133 |
+
choices=unique_values["FLAG_PHONE"],
|
134 |
+
value=lambda: random.choice(unique_values["FLAG_PHONE"]),
|
135 |
+
)
|
136 |
+
flag_work_phone = gr.Dropdown(
|
137 |
+
label="Having a work phone",
|
138 |
+
choices=unique_values["FLAG_WORK_PHONE"],
|
139 |
+
value=lambda: random.choice(unique_values["FLAG_WORK_PHONE"]),
|
140 |
+
)
|
141 |
+
flag_email = gr.Dropdown(
|
142 |
+
label="Having an email",
|
143 |
+
choices=unique_values["FLAG_EMAIL"],
|
144 |
+
value=lambda: random.choice(unique_values["FLAG_EMAIL"]),
|
145 |
+
)
|
146 |
+
|
147 |
+
with gr.Column():
|
148 |
+
label_1 = gr.Label(label="Client rating")
|
149 |
+
label_2 = gr.Textbox(label="Client verdict (client is considered bad if client rating < 0.99)")
|
150 |
+
with gr.Row():
|
151 |
+
predict_btn = gr.Button(value="Predict")
|
152 |
+
predict_btn.click(
|
153 |
+
predict,
|
154 |
+
inputs=[
|
155 |
+
age,
|
156 |
+
sex,
|
157 |
+
annual_income,
|
158 |
+
income_type,
|
159 |
+
work_experience,
|
160 |
+
occupation_type,
|
161 |
+
education_type,
|
162 |
+
amount_of_family_members,
|
163 |
+
amount_of_children,
|
164 |
+
family_status,
|
165 |
+
flag_own_car,
|
166 |
+
flag_own_realty,
|
167 |
+
housing_type,
|
168 |
+
flag_phone,
|
169 |
+
flag_work_phone,
|
170 |
+
flag_email,
|
171 |
+
],
|
172 |
+
outputs=[label_1, label_2],
|
173 |
+
)
|
174 |
+
|
175 |
+
demo.launch()
|
data/processed/app_dataset.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
YEARS_BIRTH,CODE_GENDER,AMT_INCOME_TOTAL,NAME_INCOME_TYPE,YEARS_EMPLOYED,OCCUPATION_TYPE,NAME_EDUCATION_TYPE,CNT_FAM_MEMBERS,CNT_CHILDREN,NAME_FAMILY_STATUS,FLAG_OWN_CAR,FLAG_OWN_REALTY,NAME_HOUSING_TYPE,FLAG_PHONE,FLAG_WORK_PHONE,FLAG_EMAIL
|
2 |
+
63,M,5000000,Commercial associate,74,IT staff,Secondary / secondary special,4,5,Married,Yes,Yes,Municipal apartment,No,No,No
|
models/predictions/app_predictions.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
proba_0,proba_1,label
|
2 |
+
0.9910329199509368,0.008967080049063221,0.0
|
requirements.txt
ADDED
Binary file (2.43 kB). View file
|
|
src/__init__.py
ADDED
File without changes
|
src/models/__init__.py
ADDED
File without changes
|
src/models/make_predictions.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import click
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
|
7 |
+
@click.command()
|
8 |
+
@click.argument("input_data_path", type=click.Path(exists=True))
|
9 |
+
@click.argument("input_model_path", type=click.Path(exists=True))
|
10 |
+
@click.argument("output_predictions_path", type=click.Path())
|
11 |
+
def make_predictions(
|
12 |
+
input_data_path: str, input_model_path: str, output_predictions_path: str
|
13 |
+
) -> None:
|
14 |
+
"""
|
15 |
+
Предсказывает значения меток в входных данных, используя подаваемую на вход модель.
|
16 |
+
Предсказания записываются в csv-файл с тремя столбцами. В первые два столбца записываются вероятности
|
17 |
+
отнесения объекта к классу 0 и 1 соответственно, в третий - предсказываемая метка объекта на основе
|
18 |
+
выбранного порога вероятности.
|
19 |
+
:param input_data_path: путь к данным
|
20 |
+
:param input_model_path: путь к обученной модели
|
21 |
+
:param output_predictions_path: путь к файлу с получаемыми предсказаниями
|
22 |
+
"""
|
23 |
+
df = pd.read_csv(input_data_path)
|
24 |
+
X = df.drop(["BAD_CLIENT"], axis=1, errors="ignore")
|
25 |
+
|
26 |
+
model = joblib.load(input_model_path)
|
27 |
+
probas = model.predict_proba(X)
|
28 |
+
labels = (probas[:, 1] > 0.01).astype(int)
|
29 |
+
predictions = pd.DataFrame(
|
30 |
+
data=np.column_stack([probas, labels]), columns=["proba_0", "proba_1", "label"]
|
31 |
+
)
|
32 |
+
|
33 |
+
predictions.to_csv(output_predictions_path, index=False)
|
34 |
+
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
make_predictions()
|
38 |
+
|
39 |
+
"""
|
40 |
+
python -m src.models.make_predictions processed/processed/test_dataset.csv models/final_model.pkl reports/predictions.csv
|
41 |
+
"""
|