Brandon Rowlett
turning on dogs vs cats classifier
0f44c0e
raw
history blame
1.35 kB
# import gradio as gr
# def greet(name):
# return "Hello " + name + "!!"
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch()
from fastai.vision.all import *
import gradio as gr
def is_cat(x):
return x[0].isupper()
def main():
learn = load_learner('02_trained_model_cats_vs_dogs.pkl')
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Pet Breed Classifier"
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
interpretation='default'
enable_queue=True
# gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=2)).launch(share=False)
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=2),title=title,description=description,article=article,examples=None,interpretation=interpretation,enable_queue=enable_queue).launch(share=True)
if __name__ == '__main__':
main()