Spencer525 commited on
Commit
f9ea741
1 Parent(s): 2d08031

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +109 -0
app.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from langchain_core.prompts import PromptTemplate
4
+ from langchain_community.document_loaders import PyPDFLoader
5
+ from langchain_google_genai import ChatGoogleGenerativeAI
6
+ import google.generativeai as genai
7
+ from langchain.chains.question_answering import load_qa_chain
8
+ import torch
9
+ from transformers import AutoTokenizer, AutoModelForCausalLM
10
+ from PIL import Image
11
+ import io
12
+ from threading import Thread
13
+ from transformers import TextIteratorStreamer
14
+
15
+ # Configure Gemini API
16
+ genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
17
+
18
+ # Load OpenELM model
19
+ checkpoint = "apple/OpenELM-270M"
20
+ checkpoint_tok = "meta-llama/Llama-2-7b-hf"
21
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint_tok)
22
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
+ torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
24
+ low_cpu_mem_usage = True if torch.cuda.is_available() else False
25
+
26
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch_dtype, trust_remote_code=True, low_cpu_mem_usage=low_cpu_mem_usage)
27
+ model.to(device)
28
+
29
+ # Adjust tokenizer settings
30
+ if tokenizer.pad_token is None:
31
+ tokenizer.pad_token = tokenizer.eos_token
32
+ tokenizer.pad_token_id = tokenizer.eos_token_id
33
+
34
+ # Define other settings
35
+ max_new_tokens = 250
36
+ repetition_penalty = 1.4
37
+ rtl = False
38
+
39
+ # Function to process PDF using Gemini API
40
+ def process_pdf(file_path, question):
41
+ model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
42
+ prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """
43
+ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
44
+
45
+ pdf_loader = PyPDFLoader(file_path)
46
+ pages = pdf_loader.load_and_split()
47
+ context = "\n".join(str(page.page_content) for page in pages[:200])
48
+ stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
49
+ stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True)
50
+ return stuff_answer['output_text']
51
+
52
+ # Function to process images using Gemini API
53
+ def process_image(image, question):
54
+ model = genai.GenerativeModel('gemini-pro-vision')
55
+ response = model.generate_content([image, question])
56
+ return response.text
57
+
58
+ # Function to generate follow-up using OpenELM model
59
+ def generate_openelm_followup(answer):
60
+ prompt = f"Based on this answer: {answer}\nGenerate a follow-up question:"
61
+ inputs = tokenizer([prompt], return_tensors='pt').input_ids.to(model.device)
62
+
63
+ # Streaming output using TextIteratorStreamer
64
+ decode_kwargs = dict(skip_special_tokens=True, clean_up_tokenization_spaces=True)
65
+ streamer = TextIteratorStreamer(tokenizer, timeout=5., decode_kwargs=decode_kwargs)
66
+
67
+ generation_kwargs = dict(input_ids=inputs, streamer=streamer, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty)
68
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
69
+ thread.start()
70
+
71
+ followup = ""
72
+ for new_text in streamer:
73
+ if new_text:
74
+ followup += new_text.replace(tokenizer.pad_token, "").replace(tokenizer.bos_token, "")
75
+
76
+ return followup
77
+
78
+ # Function to process input and generate output
79
+ def process_input(file, image, question):
80
+ try:
81
+ if file is not None:
82
+ gemini_answer = process_pdf(file.name, question)
83
+ elif image is not None:
84
+ gemini_answer = process_image(image, question)
85
+ else:
86
+ return "Please upload a PDF file or an image."
87
+
88
+ openelm_followup = generate_openelm_followup(gemini_answer)
89
+ combined_output = f"Gemini Answer: {gemini_answer}\n\nOpenELM Follow-up: {openelm_followup}"
90
+ return combined_output
91
+ except Exception as e:
92
+ return f"An error occurred: {str(e)}"
93
+
94
+ # Define Gradio Interface
95
+ with gr.Blocks() as demo:
96
+ gr.Markdown("# Multi-modal RAG Knowledge Retrieval using Gemini API and OpenELM Model")
97
+
98
+ with gr.Row():
99
+ with gr.Column():
100
+ input_file = gr.File(label="Upload PDF File")
101
+ input_image = gr.Image(type="pil", label="Upload Image")
102
+ input_question = gr.Textbox(label="Ask about the document or image")
103
+
104
+ output_text = gr.Textbox(label="Answer - Combined Gemini and OpenELM")
105
+
106
+ submit_button = gr.Button("Submit")
107
+ submit_button.click(fn=process_input, inputs=[input_file, input_image, input_question], outputs=output_text)
108
+
109
+ demo.launch()