Spaces:
Running
Running
Stanford-TH
commited on
Commit
•
2da3ad3
1
Parent(s):
d862c41
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,31 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from ScriptMatcher import ScriptMatcher
|
3 |
-
# Initialize the ScriptMatcher instance
|
4 |
-
scriptmatcher = ScriptMatcher()
|
5 |
-
|
6 |
-
def classify_movie_genre(description, genres):
|
7 |
-
"""
|
8 |
-
Given a description (synopsis) and genres, return similar series predictions.
|
9 |
-
"""
|
10 |
-
# Split the genres string into a list of keywords
|
11 |
-
genre_keywords = genres.split(",") # Assuming genres are comma-separated
|
12 |
-
# Get the predictions using the ScriptMatcher
|
13 |
-
predictions = scriptmatcher.find_similar_series(description, genre_keywords)
|
14 |
-
|
15 |
-
return predictions
|
16 |
-
|
17 |
-
# Create the Gradio interface
|
18 |
-
iface = gr.Interface(
|
19 |
-
fn=classify_movie_genre,
|
20 |
-
inputs=[
|
21 |
-
gr.Textbox(lines=5, label="Synopsis (Description)"),
|
22 |
-
gr.Textbox(label="Genres (Comma-separated)")
|
23 |
-
],
|
24 |
-
outputs=gr.Dataframe(label="Similar Series Predictions"),
|
25 |
-
live=False, # No need for live updates as the processing will be based on submission
|
26 |
-
title="Genre Prediction",
|
27 |
-
description="Provide a movie synopsis and genres to get predictions for similar scripts.",
|
28 |
-
)
|
29 |
-
|
30 |
-
# Launch the Gradio interface
|
31 |
iface.launch(inline=False)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ScriptMatcher import ScriptMatcher
|
3 |
+
# Initialize the ScriptMatcher instance
|
4 |
+
scriptmatcher = ScriptMatcher()
|
5 |
+
|
6 |
+
def classify_movie_genre(description, genres):
|
7 |
+
"""
|
8 |
+
Given a description (synopsis) and genres, return similar series predictions.
|
9 |
+
"""
|
10 |
+
# Split the genres string into a list of keywords
|
11 |
+
genre_keywords = genres.split(",") # Assuming genres are comma-separated
|
12 |
+
# Get the predictions using the ScriptMatcher
|
13 |
+
predictions = scriptmatcher.find_similar_series(description, genre_keywords)
|
14 |
+
|
15 |
+
return pd.DataFrame(predictions)
|
16 |
+
|
17 |
+
# Create the Gradio interface
|
18 |
+
iface = gr.Interface(
|
19 |
+
fn=classify_movie_genre,
|
20 |
+
inputs=[
|
21 |
+
gr.Textbox(lines=5, label="Synopsis (Description)"),
|
22 |
+
gr.Textbox(label="Genres (Comma-separated)")
|
23 |
+
],
|
24 |
+
outputs=gr.Dataframe(label="Similar Series Predictions"),
|
25 |
+
live=False, # No need for live updates as the processing will be based on submission
|
26 |
+
title="Genre Prediction",
|
27 |
+
description="Provide a movie synopsis and genres to get predictions for similar scripts.",
|
28 |
+
)
|
29 |
+
|
30 |
+
# Launch the Gradio interface
|
31 |
iface.launch(inline=False)
|