Spaces:
No application file
No application file
Kelsey Sterner
commited on
Commit
•
004b923
1
Parent(s):
42b9a99
init
Browse files- README.md +1 -1
- dviApp.py +143 -0
- requirements.txt +7 -0
README.md
CHANGED
@@ -8,5 +8,5 @@ sdk_version: 1.28.2
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
-
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
12 |
+
Dvi
|
dviApp.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import numpy as np
|
4 |
+
from streamlit_card import card
|
5 |
+
import yfinance as yf
|
6 |
+
import altair as alt
|
7 |
+
|
8 |
+
# Set the background color and opacity for the container
|
9 |
+
container_style = """
|
10 |
+
background-color: rgba(55, 65, 82, 0.7);
|
11 |
+
padding: 100px;
|
12 |
+
border-radius: 10px;
|
13 |
+
margin-top: 20px;
|
14 |
+
margin-bottom: 20px;
|
15 |
+
"""
|
16 |
+
|
17 |
+
st.markdown("<h1 style='text-align: center;'>Volatility Indicator</h1>", unsafe_allow_html=True)
|
18 |
+
st.write(""" ### Economic Volitility Examination""")
|
19 |
+
# Create a translucent container
|
20 |
+
x = card(title="", text = "When we talk about stock volitility, we typically need fundamental data like company earning reports, interest rates, and technical analysis trends",
|
21 |
+
styles = {
|
22 |
+
"card": {
|
23 |
+
"width": "650px",
|
24 |
+
"height": "200px",
|
25 |
+
"background-color": "rgba(55, 65, 82, 1)",
|
26 |
+
"padding": "20px",
|
27 |
+
"margin-top": "20px",
|
28 |
+
#"margin-bottom": "20px",
|
29 |
+
},
|
30 |
+
|
31 |
+
}
|
32 |
+
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
# Download historical stock data for Tesla
|
37 |
+
ticker = "TSLA"
|
38 |
+
start_date = "2021-09-29"
|
39 |
+
end_date = "2022-09-29"
|
40 |
+
|
41 |
+
stock_data = yf.download(ticker, start=start_date, end=end_date)
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
# Calculate daily returns
|
46 |
+
stock_data["Daily_Return"] = stock_data["Close"].pct_change()
|
47 |
+
|
48 |
+
# Calculate historical volatility (standard deviation)
|
49 |
+
historical_volatility = stock_data["Daily_Return"].std()
|
50 |
+
|
51 |
+
# Streamlit app
|
52 |
+
st.markdown("<h1 style='text-align: center;'>Tesla Stock Volatility Analysis</h1>", unsafe_allow_html=True)
|
53 |
+
|
54 |
+
|
55 |
+
# Display historical stock data
|
56 |
+
st.subheader("Historical Stock Data")
|
57 |
+
st.write(stock_data)
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
stock_data = yf.download(ticker, start=start_date, end=end_date)
|
62 |
+
|
63 |
+
# Calculate daily returns
|
64 |
+
stock_data["Daily_Return"] = ((stock_data["Close"] / stock_data["Open"]) - 1)
|
65 |
+
notable = []
|
66 |
+
days = []
|
67 |
+
for day in stock_data["Daily_Return"]:
|
68 |
+
if day > 0.1:
|
69 |
+
notable.append(day)
|
70 |
+
days.append("Date")
|
71 |
+
elif day < -0.1:
|
72 |
+
notable.append(day)
|
73 |
+
days.append("Date")
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
# Line chart for stock prices
|
79 |
+
st.subheader("Tesla Stock Prices Over Time")
|
80 |
+
line_chart = alt.Chart(stock_data.reset_index()).mark_line().encode(
|
81 |
+
x="Date:T",
|
82 |
+
y="Daily_Return",
|
83 |
+
tooltip=["Date", "Daily_Return"]
|
84 |
+
).properties(width=800, height=400)
|
85 |
+
st.altair_chart(line_chart, use_container_width=True)
|
86 |
+
|
87 |
+
st.write("2021-11-09 00:00:00: \"Telsa fire in Stanford took 42 minutes to extinguish\" ")
|
88 |
+
st.write("2022-01-27 00:00:00: \"Tesla drops more than 11% as investors digest new vehicle delays\"")
|
89 |
+
st.write("2022-02-23 00:00:00: \"Tesla model Y wins EV award\"")
|
90 |
+
st.write("2022-04-26 00:00:00: \"Elon Musk says people might download their personalities onto a human robot constructed by Tesla\"")
|
91 |
+
|
92 |
+
|
93 |
+
st.markdown("<h1 style='text-align: center;'>Our Approach</h1>", unsafe_allow_html=True)
|
94 |
+
|
95 |
+
x = card(title="",
|
96 |
+
text = "How can we predict the potential social impact on stock volitility? Qualitative tabular data poses a challenge concerning data processing resources",
|
97 |
+
styles = {
|
98 |
+
"card": {
|
99 |
+
"width": "650px",
|
100 |
+
"height": "200px",
|
101 |
+
"background-color": "rgba(55, 65, 82, 1)",
|
102 |
+
"padding": "50px",
|
103 |
+
"margin-top": "10px",
|
104 |
+
"margin-bottom": "10px",
|
105 |
+
},
|
106 |
+
|
107 |
+
}
|
108 |
+
|
109 |
+
)
|
110 |
+
st.write("")
|
111 |
+
|
112 |
+
|
113 |
+
# Streamlit app
|
114 |
+
st.title('First Model')
|
115 |
+
model1 = card(title="",
|
116 |
+
text = "",
|
117 |
+
styles = {
|
118 |
+
"card": {
|
119 |
+
"width": "650px",
|
120 |
+
"height": "200px",
|
121 |
+
"margin-top": "10px",
|
122 |
+
"margin-bottom": "10px",
|
123 |
+
},
|
124 |
+
},
|
125 |
+
image="https://i.postimg.cc/Bn8q0Ddy/XBoost.png",
|
126 |
+
on_click=lambda: st.write("The model generating embeddings represent the data in the prompt. Each embedding captures an immense amount of training data that is then used to project desired data")
|
127 |
+
|
128 |
+
)
|
129 |
+
st.title('Second Model')
|
130 |
+
mod2 = card(title="",
|
131 |
+
text = "",
|
132 |
+
styles = {
|
133 |
+
"card": {
|
134 |
+
"width": "700px",
|
135 |
+
"height": "400px",
|
136 |
+
"margin-top": "20px",
|
137 |
+
"margin-bottom": "20px",
|
138 |
+
}
|
139 |
+
},
|
140 |
+
image="https://miro.medium.com/v2/resize:fit:976/1*oc1gaCFvgWXq_gHQFM63UQ.png",
|
141 |
+
on_click=lambda: st.write("A neural network learns to map input data to output by adjusting the strengths of connections (weights) between nodes during a training process. This enables the network to recognize patterns and make predictions on new data.")
|
142 |
+
|
143 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
streamlit
|
3 |
+
numpy
|
4 |
+
streamlit_card
|
5 |
+
yfinance
|
6 |
+
altair
|
7 |
+
markdownlit
|