import openai;
import json, os,sys
from dotenv import load_dotenv
load_dotenv()
# openai.api_key = os.environ.get("OPENAI_API_KEY")
import openai; openai.api_key = "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"
from Candidate import JobCandidate
import litellm
from litellm import completion
import xml.etree.ElementTree as ET
def printc(obj, color="cyan"):
color_code = {
"black": "30", "red": "31", "green": "32", "yellow": "33",
"blue": "34", "magenta": "35", "cyan": "36", "white": "37"
}
colored_text = f"\033[{color_code[color]}m{obj}\033[0m" if color in color_code else obj
print(colored_text)
LLM=os.environ.get("COMPARATOR_LLM","chat-bison")
# LLM=os.environ.get("COMPARATOR_LLM","gpt-3.5-turbo-1106")
def getContent(candidateA, candidateB) -> str:
return (
"Given the following two candidates, choose between the two. Here is the rubric: "
+ get_rubric()
+ "Candidate A: "
+ "\nRESUME:\n" +candidateA.resume_text+"\nEND Resume\n"
+ "\nGITHUB:\n" +candidateA.github_text+"\nEND GITHUB\n"
+ " END OF Candidate A"
+ "\n\nCandidate B: "
+ "\nRESUME:\n" +candidateB.resume_text+"\nEND Resume\n"
+ "\nGITHUB:\n" +candidateB.github_text+"\nEND GITHUB\n"
+ " END OF Candidate B"
)
def google_compare_resumes(content:str, nameA="", nameB=""):
choice =0
messages=[
{"role": "user", "content": "You are an LLM recrutier who will choose between two candidates based on an provided rubric"},
{"role": "user", "content":
"""
You are an LLM recrutier who will choose between two candidates based on an provided rubric,
you will only use bullet point and broken english instead of proper english to be more concise
"""
},
{"role": "assistant", "content":
"""
I can assist you in evaluating two candidates based on a provided rubric.
Provide me with the rubric or the criteria you'd like to use for the evaluation,
and I'll help you assess the candidates accordingly and explain myself in less that 50 words
"""
},
{"role": "user", "content": content}
]
response =completion(model=LLM, messages=messages,max_tokens=170,)
printc(response["choices"][0]["message"],'red')
messages=[
{"role": "assistant","content":str(response["choices"][0]["message"])},
{"role": "user","content":"okay so now with just a single token select A or B, "}
]
retries=3
while retries >0:
response =completion(model=LLM, messages=messages,max_tokens=5,temperature=0.01)
# printc(response,'cyan')
html=''.join(str(response["choices"][0]["message"]['content']).split())
if "