File size: 7,916 Bytes
2a67e1c
f86e7a9
 
a626dc8
 
23536d8
 
2a67e1c
12f769d
a626dc8
 
 
 
12f769d
 
a626dc8
 
 
 
 
 
 
 
a891048
 
 
 
 
 
 
12f769d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a891048
 
 
12f769d
a891048
 
 
 
a626dc8
12f769d
 
a626dc8
 
a891048
a626dc8
 
 
2a67e1c
23536d8
 
 
 
 
 
 
 
f86e7a9
a626dc8
 
 
f86e7a9
 
 
cf2a5aa
f86e7a9
 
12f769d
fdea788
 
 
 
 
f86e7a9
 
a626dc8
 
 
f86e7a9
a626dc8
f86e7a9
 
 
 
a626dc8
f86e7a9
a626dc8
 
 
 
 
 
12f769d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdea788
 
23536d8
fdea788
23536d8
 
 
 
 
 
fdea788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a891048
a626dc8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import streamlit as st
import os
from openai import AzureOpenAI

from functions import call_function
import firebase_admin
from firebase_admin import credentials, firestore

st.title("SupportFlow Demo")
# when will my order be delivered?, [email protected] W123123

functions = [
    {
        "name": "lookup_order_status",
        "description": "Retrieves the status, location, etc. of an order based on **both** the email address and order number.",
        "parameters": {
            "type": "object",
            "properties": {
                "email_address": {
                    "type": "string",
                    "description": "The email address associated with the order"
                },
                "order_number": {
                    "type": "integer",
                    "description": "The order number."
                },
            },
            "required": ["email_address", "order_number"]
        }
    },
    # {
    #     "name": "lookup_product",
    #     "description": "Returns a detailed list of products based on a product query.",
    #     "parameters": {
    #         "type": "object",
    #         "properties": {
    #             "query": {
    #                 "type": "string",
    #                 "description": "Product query to search for like drills, lights, or hammers"
    #             },
    #         },
    #         "required": ["query"]
    #     }
    # },
    # {
    #     "name": "get_product_listing",
    #     "description": "Returns information about the product based on the SKU.",
    #     "parameters": {
    #         "type": "object",
    #         "properties": {
    #             "sku": {
    #                 "type": "integer",
    #                 "description": "Product sku to search for like 123123"
    #             },
    #         },
    #         "required": ["sku"]
    #     }
    # },
    {
        "name": "refer_to_human_agent",
        "description": "Use this to refer the customer's question to a human agent. You should only call this "
                       "function if there is no way for you to answer their question.",
        "parameters": {
            "type": "object",
            "properties": {
                "conversation_summary": {
                    "type": "string",
                    "description": "A short summary of the current conversation so the human agent can quickly get up "
                                   "to speed. Make sure you include all relevant details."
                },
            },
            "required": ["conversation_summary"]
        }
    }
]

cred = credentials.Certificate("supportflow-4851d-firebase-adminsdk-cdrzu-bf620a4b52.json")
try:
    app = firebase_admin.initialize_app(cred)
except Exception:
    pass

db = firestore.client()

client = AzureOpenAI(
    api_key=os.environ['OPENAI_API_KEY'],
    api_version="2023-07-01-preview",
    azure_endpoint=os.environ['AZURE_ENDPOINT'],
)

if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-35-turbo"

if "messages" not in st.session_state:
    st.session_state.messages = [{"role": "system", "content": "You are a helpful customer support agent for The Home "
                                                               "Depot. Your goal is to answer as many questions as "
                                                               "possible without escalating to a human agent. "
                                                               "However, if necessary, you can refer the customer to "
                                                               "a human agent if you do not know the answer to their "
                                                               "question. For example, you can help users track their orders, but you **cannot** help with returns."},]

for message in st.session_state.messages:
    if message["role"] == "assistant" or message["role"] == "user":
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

if prompt := st.chat_input("How can we help you today?"):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    with st.chat_message("assistant", avatar="🏠"):  # avatar=st.image('Home-Depot-Logo.png', width=50)):
        message_placeholder = st.empty()
        full_message = ""
        func_call = {
            "name": None,
            "arguments": "",
        }

        for response in client.chat.completions.create(
                model=st.session_state["openai_model"],
                messages=[
            {"role": m["role"], "content": m["content"], "name": m["name"]} if "name" in m else
            {"role": m["role"], "content": m["content"]}
            for m in st.session_state.messages
        ],
                functions=functions,
                function_call="auto",
                stream=True,
        ):
            if len(response.choices) > 0:
                delta = response.choices[0].delta

                full_message += (delta.content or "")
                if delta.function_call is not None:
                    if delta.function_call.name is not None:
                        func_call["name"] = delta.function_call.name
                    if delta.function_call.arguments is not None:
                        func_call["arguments"] += delta.function_call.arguments

                message_placeholder.markdown(full_message + "")

        if func_call["name"] is not None and func_call["arguments"] != "":
            print(f"Function generation requested, calling function")
            function_response = call_function(st.session_state.messages, func_call)
            print("function response")
            print(function_response)
            st.session_state.messages.append(function_response)

            if function_response["name"] is not None and function_response["name"] == "refer_to_human_agent":
                print("connect to human agent")
                print(function_response["name"])
                st.info('You will be connected with an agent shortly', icon="ℹ️")

                # Get the document to update
                doc_ref = db.collection('handoffs').document('conversation')

                # Update the document
                doc_ref.update({'summary': str(function_response["content"]), 'message_history': st.session_state.messages})
            else:
                message_placeholder = st.empty()
                full_message = ""

                for response in client.chat.completions.create(
                        model=st.session_state["openai_model"],
                        messages=[
                            {"role": m["role"], "content": m["content"], "name": m["name"]} if "name" in m else
                            {"role": m["role"], "content": m["content"]}
                            for m in st.session_state.messages
                        ],
                        functions=functions,
                        function_call="auto",
                        stream=True,
                ):
                    if len(response.choices) > 0:
                        delta = response.choices[0].delta

                        full_message += (delta.content or "")
                        if delta.function_call is not None:
                            if delta.function_call.name is not None:
                                func_call["name"] = delta.function_call.name
                            if delta.function_call.arguments is not None:
                                func_call["arguments"] += delta.function_call.arguments

                        message_placeholder.markdown(full_message + "")

        message_placeholder.markdown(full_message)

        st.session_state.messages.append({"role": "assistant", "content": full_message})