Spaces:
Running
on
Zero
Running
on
Zero
# Imports | |
import gradio as gr | |
import spaces | |
import torch | |
from PIL import Image | |
from transformers import AutoModel, AutoTokenizer | |
import argparse | |
from decord import VideoReader, cpu | |
import io | |
import os | |
import copy | |
import requests | |
import base64 | |
import json | |
import traceback | |
import re | |
import modelscope_studio as mgr | |
# Pre-Initialize | |
DEVICE = "auto" | |
if DEVICE == "auto": | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"[SYSTEM] | Using {DEVICE} type compute device.") | |
# Variables | |
DEFAULT_INPUT = "Describe in one paragraph." | |
repo = AutoModel.from_pretrained("openbmb/MiniCPM-V-2_6", torch_dtype=torch.bfloat16, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V-2_6", trust_remote_code=True) | |
repo.eval() | |
css = ''' | |
.gradio-container{max-width: 560px !important} | |
h1{text-align:center} | |
footer { | |
visibility: hidden | |
} | |
''' | |
# Functions | |
def generate(image, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512): | |
global model, tokenizer | |
print(image) | |
image_rgb = Image.open(image).convert("RGB") | |
print(image_rgb, instruction) | |
inputs = [{"role": "user", "content": [image_rgb, instruction]}] | |
parameters = { | |
"sampling": sampling, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
"max_new_tokens": max_tokens | |
} | |
output = model.chat(image=None, msgs=inputs, tokenizer=tokenizer, **parameters) | |
return output | |
def cloud(): | |
print("[CLOUD] | Space maintained.") | |
# Initialize | |
with gr.Blocks(css=css) as main: | |
with gr.Column(): | |
gr.Markdown("🪄 Analyze images and caption them using state-of-the-art openbmb/MiniCPM-V-2_6.") | |
with gr.Column(): | |
input = gr.Image(label="Image") | |
instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction") | |
sampling = gr.Checkbox(value=False, label="Sampling") | |
temperature = gr.Slider(minimum=0, maximum=2, step=0.01, value=0.7, label="Temperature") | |
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P") | |
top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K") | |
repetition_penalty = gr.Slider(minimum=0, maximum=2, step=0.01, value=1.05, label="Repetition Penalty") | |
max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens") | |
submit = gr.Button("▶") | |
maintain = gr.Button("☁️") | |
with gr.Column(): | |
output = gr.Textbox(lines=1, value="", label="Output") | |
submit.click(fn=generate, inputs=[input, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False) | |
maintain.click(cloud, inputs=[], outputs=[], queue=False) | |
main.launch(show_api=True) |