Spaces:
Running
on
Zero
Running
on
Zero
Staticaliza
commited on
Commit
•
45099c6
1
Parent(s):
32f0fe9
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import spaces
|
|
4 |
import torch
|
5 |
|
6 |
from PIL import Image
|
|
|
7 |
from transformers import AutoModel, AutoTokenizer
|
8 |
|
9 |
# Pre-Initialize
|
@@ -14,6 +15,7 @@ print(f"[SYSTEM] | Using {DEVICE} type compute device.")
|
|
14 |
|
15 |
# Variables
|
16 |
DEFAULT_INPUT = "Describe in one paragraph."
|
|
|
17 |
|
18 |
repo = AutoModel.from_pretrained("openbmb/MiniCPM-V-2_6", torch_dtype=torch.bfloat16, trust_remote_code=True)
|
19 |
tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V-2_6", trust_remote_code=True)
|
@@ -27,6 +29,21 @@ footer {
|
|
27 |
'''
|
28 |
|
29 |
# Functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
@spaces.GPU(duration=60)
|
31 |
def generate(image, video, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512):
|
32 |
repo.to(DEVICE)
|
@@ -36,11 +53,10 @@ def generate(image, video, instruction=DEFAULT_INPUT, sampling=False, temperatur
|
|
36 |
|
37 |
if not video:
|
38 |
image_data = Image.fromarray(image.astype('uint8'), 'RGB')
|
39 |
-
print(image_data, instruction)
|
40 |
-
|
41 |
inputs = [{"role": "user", "content": [image_data, instruction]}]
|
42 |
else:
|
43 |
-
|
|
|
44 |
|
45 |
parameters = {
|
46 |
"sampling": sampling,
|
@@ -49,6 +65,8 @@ def generate(image, video, instruction=DEFAULT_INPUT, sampling=False, temperatur
|
|
49 |
"top_k": top_k,
|
50 |
"repetition_penalty": repetition_penalty,
|
51 |
"max_new_tokens": max_tokens
|
|
|
|
|
52 |
}
|
53 |
|
54 |
output = repo.chat(image=None, msgs=inputs, tokenizer=tokenizer, **parameters)
|
|
|
4 |
import torch
|
5 |
|
6 |
from PIL import Image
|
7 |
+
from decord import VideoReader, cpu
|
8 |
from transformers import AutoModel, AutoTokenizer
|
9 |
|
10 |
# Pre-Initialize
|
|
|
15 |
|
16 |
# Variables
|
17 |
DEFAULT_INPUT = "Describe in one paragraph."
|
18 |
+
MAX_FRAMES = 64
|
19 |
|
20 |
repo = AutoModel.from_pretrained("openbmb/MiniCPM-V-2_6", torch_dtype=torch.bfloat16, trust_remote_code=True)
|
21 |
tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V-2_6", trust_remote_code=True)
|
|
|
29 |
'''
|
30 |
|
31 |
# Functions
|
32 |
+
def encode_video(video_path):
|
33 |
+
def uniform_sample(l, n):
|
34 |
+
gap = len(l) / n
|
35 |
+
idxs = [int(i * gap + gap / 2) for i in range(n)]
|
36 |
+
return [l[i] for i in idxs]
|
37 |
+
|
38 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
39 |
+
sample_fps = round(vr.get_avg_fps() / 1)
|
40 |
+
frame_idx = [i for i in range(0, len(vr), sample_fps)]
|
41 |
+
if len(frame_idx) > MAX_NUM_FRAMES:
|
42 |
+
frame_idx = uniform_sample(frame_idx, MAX_FRAMES)
|
43 |
+
frames = vr.get_batch(frame_idx).asnumpy()
|
44 |
+
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
|
45 |
+
return frames
|
46 |
+
|
47 |
@spaces.GPU(duration=60)
|
48 |
def generate(image, video, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512):
|
49 |
repo.to(DEVICE)
|
|
|
53 |
|
54 |
if not video:
|
55 |
image_data = Image.fromarray(image.astype('uint8'), 'RGB')
|
|
|
|
|
56 |
inputs = [{"role": "user", "content": [image_data, instruction]}]
|
57 |
else:
|
58 |
+
video_data = encode_video(video)
|
59 |
+
inputs = [{"role": "user", "content": video_data + [instruction]}]
|
60 |
|
61 |
parameters = {
|
62 |
"sampling": sampling,
|
|
|
65 |
"top_k": top_k,
|
66 |
"repetition_penalty": repetition_penalty,
|
67 |
"max_new_tokens": max_tokens
|
68 |
+
"use_image_id": False,
|
69 |
+
"max_slice_nums": 2,
|
70 |
}
|
71 |
|
72 |
output = repo.chat(image=None, msgs=inputs, tokenizer=tokenizer, **parameters)
|