# Imports import gradio as gr import spaces import torch from PIL import Image from decord import VideoReader, cpu from transformers import AutoModel, AutoTokenizer # Pre-Initialize DEVICE = "auto" if DEVICE == "auto": DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print(f"[SYSTEM] | Using {DEVICE} type compute device.") # Variables DEFAULT_INPUT = "Describe in one paragraph." MAX_FRAMES = 64 repo = AutoModel.from_pretrained("openbmb/MiniCPM-V-2_6", torch_dtype=torch.bfloat16, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V-2_6", trust_remote_code=True) css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} footer { visibility: hidden } ''' # Functions def encode_video(video_path): def uniform_sample(l, n): gap = len(l) / n idxs = [int(i * gap + gap / 2) for i in range(n)] return [l[i] for i in idxs] vr = VideoReader(video_path, ctx=cpu(0)) sample_fps = round(vr.get_avg_fps() / 1) frame_idx = [i for i in range(0, len(vr), sample_fps)] if len(frame_idx) > MAX_FRAMES: frame_idx = uniform_sample(frame_idx, MAX_FRAMES) frames = vr.get_batch(frame_idx).asnumpy() frames = [Image.fromarray(v.astype('uint8')) for v in frames] return frames @spaces.GPU(duration=60) def generate(image, video, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512): repo.to(DEVICE) print(image) print(video) if not video: image_data = Image.fromarray(image.astype('uint8'), 'RGB') inputs = [{"role": "user", "content": [image_data, instruction]}] else: video_data = encode_video(video) inputs = [{"role": "user", "content": video_data + [instruction]}] parameters = { "sampling": sampling, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, "max_new_tokens": max_tokens, "use_image_id": False, "max_slice_nums": 2, } output = repo.chat(image=None, msgs=inputs, tokenizer=tokenizer, **parameters) print(output) return output def cloud(): print("[CLOUD] | Space maintained.") # Initialize with gr.Blocks(css=css) as main: with gr.Column(): gr.Markdown("🪄 Analyze images and caption them using state-of-the-art openbmb/MiniCPM-V-2_6.") with gr.Column(): input = gr.Image(label="Image") input_2 = gr.Video(label="Video") instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction") sampling = gr.Checkbox(value=False, label="Sampling") temperature = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature") top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P") top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K") repetition_penalty = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=1.05, label="Repetition Penalty") max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens") submit = gr.Button("▶") maintain = gr.Button("☁️") with gr.Column(): output = gr.Textbox(lines=1, value="", label="Output") submit.click(fn=generate, inputs=[input, input_2, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False) maintain.click(cloud, inputs=[], outputs=[], queue=False) main.launch(show_api=True)