|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
from functools import cached_property |
|
|
|
from . import Image |
|
|
|
|
|
class Stat: |
|
def __init__( |
|
self, image_or_list: Image.Image | list[int], mask: Image.Image | None = None |
|
) -> None: |
|
""" |
|
Calculate statistics for the given image. If a mask is included, |
|
only the regions covered by that mask are included in the |
|
statistics. You can also pass in a previously calculated histogram. |
|
|
|
:param image: A PIL image, or a precalculated histogram. |
|
|
|
.. note:: |
|
|
|
For a PIL image, calculations rely on the |
|
:py:meth:`~PIL.Image.Image.histogram` method. The pixel counts are |
|
grouped into 256 bins, even if the image has more than 8 bits per |
|
channel. So ``I`` and ``F`` mode images have a maximum ``mean``, |
|
``median`` and ``rms`` of 255, and cannot have an ``extrema`` maximum |
|
of more than 255. |
|
|
|
:param mask: An optional mask. |
|
""" |
|
if isinstance(image_or_list, Image.Image): |
|
self.h = image_or_list.histogram(mask) |
|
elif isinstance(image_or_list, list): |
|
self.h = image_or_list |
|
else: |
|
msg = "first argument must be image or list" |
|
raise TypeError(msg) |
|
self.bands = list(range(len(self.h) // 256)) |
|
|
|
@cached_property |
|
def extrema(self) -> list[tuple[int, int]]: |
|
""" |
|
Min/max values for each band in the image. |
|
|
|
.. note:: |
|
This relies on the :py:meth:`~PIL.Image.Image.histogram` method, and |
|
simply returns the low and high bins used. This is correct for |
|
images with 8 bits per channel, but fails for other modes such as |
|
``I`` or ``F``. Instead, use :py:meth:`~PIL.Image.Image.getextrema` to |
|
return per-band extrema for the image. This is more correct and |
|
efficient because, for non-8-bit modes, the histogram method uses |
|
:py:meth:`~PIL.Image.Image.getextrema` to determine the bins used. |
|
""" |
|
|
|
def minmax(histogram: list[int]) -> tuple[int, int]: |
|
res_min, res_max = 255, 0 |
|
for i in range(256): |
|
if histogram[i]: |
|
res_min = i |
|
break |
|
for i in range(255, -1, -1): |
|
if histogram[i]: |
|
res_max = i |
|
break |
|
return res_min, res_max |
|
|
|
return [minmax(self.h[i:]) for i in range(0, len(self.h), 256)] |
|
|
|
@cached_property |
|
def count(self) -> list[int]: |
|
"""Total number of pixels for each band in the image.""" |
|
return [sum(self.h[i : i + 256]) for i in range(0, len(self.h), 256)] |
|
|
|
@cached_property |
|
def sum(self) -> list[float]: |
|
"""Sum of all pixels for each band in the image.""" |
|
|
|
v = [] |
|
for i in range(0, len(self.h), 256): |
|
layer_sum = 0.0 |
|
for j in range(256): |
|
layer_sum += j * self.h[i + j] |
|
v.append(layer_sum) |
|
return v |
|
|
|
@cached_property |
|
def sum2(self) -> list[float]: |
|
"""Squared sum of all pixels for each band in the image.""" |
|
|
|
v = [] |
|
for i in range(0, len(self.h), 256): |
|
sum2 = 0.0 |
|
for j in range(256): |
|
sum2 += (j**2) * float(self.h[i + j]) |
|
v.append(sum2) |
|
return v |
|
|
|
@cached_property |
|
def mean(self) -> list[float]: |
|
"""Average (arithmetic mean) pixel level for each band in the image.""" |
|
return [self.sum[i] / self.count[i] for i in self.bands] |
|
|
|
@cached_property |
|
def median(self) -> list[int]: |
|
"""Median pixel level for each band in the image.""" |
|
|
|
v = [] |
|
for i in self.bands: |
|
s = 0 |
|
half = self.count[i] // 2 |
|
b = i * 256 |
|
for j in range(256): |
|
s = s + self.h[b + j] |
|
if s > half: |
|
break |
|
v.append(j) |
|
return v |
|
|
|
@cached_property |
|
def rms(self) -> list[float]: |
|
"""RMS (root-mean-square) for each band in the image.""" |
|
return [math.sqrt(self.sum2[i] / self.count[i]) for i in self.bands] |
|
|
|
@cached_property |
|
def var(self) -> list[float]: |
|
"""Variance for each band in the image.""" |
|
return [ |
|
(self.sum2[i] - (self.sum[i] ** 2.0) / self.count[i]) / self.count[i] |
|
for i in self.bands |
|
] |
|
|
|
@cached_property |
|
def stddev(self) -> list[float]: |
|
"""Standard deviation for each band in the image.""" |
|
return [math.sqrt(self.var[i]) for i in self.bands] |
|
|
|
|
|
Global = Stat |
|
|