|
import gradio as gr |
|
import pandas as pd |
|
import json |
|
from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS, LEADERBOARD_CSS |
|
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub |
|
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message |
|
from datetime import datetime, timezone |
|
|
|
LAST_UPDATED = "Nov 22th 2024" |
|
|
|
column_names = { |
|
"MODEL": "Model", |
|
"Avg. WER": "Average WER β¬οΈ", |
|
"RTFx": "RTFx β¬οΈοΈ", |
|
"AMI WER": "AMI", |
|
"Earnings22 WER": "Earnings22", |
|
"Gigaspeech WER": "Gigaspeech", |
|
"LS Clean WER": "LS Clean", |
|
"LS Other WER": "LS Other", |
|
"SPGISpeech WER": "SPGISpeech", |
|
"Tedlium WER": "Tedlium", |
|
"Voxpopuli WER": "Voxpopuli", |
|
} |
|
|
|
whisper_column_names = { |
|
"MODEL": "Model", |
|
"Avg. WER": "Average WER β¬οΈ", |
|
"RTFx": "RTFx β¬οΈοΈ", |
|
"Backend": "Backend", |
|
"Hardware": "Device", |
|
"AMI WER": "AMI", |
|
"Earnings22 WER": "Earnings22", |
|
"Gigaspeech WER": "Gigaspeech", |
|
"LS Clean WER": "LS Clean", |
|
"LS Other WER": "LS Other", |
|
"SPGISpeech WER": "SPGISpeech", |
|
"Tedlium WER": "Tedlium", |
|
"Voxpopuli WER": "Voxpopuli", |
|
} |
|
|
|
eval_queue_repo, requested_models, csv_results, whisper_eval_queue_repo, whisper_csv_results = load_all_info_from_dataset_hub() |
|
|
|
if not csv_results.exists(): |
|
raise Exception(f"CSV file {csv_results} does not exist locally") |
|
if not whisper_csv_results.exists(): |
|
raise Exception(f"CSV file {whisper_csv_results} does not exist locally") |
|
|
|
|
|
original_df = pd.read_csv(csv_results) |
|
whisper_df = pd.read_csv(whisper_csv_results) |
|
|
|
def formatter(x): |
|
if type(x) is str: |
|
x = x |
|
else: |
|
x = round(x, 2) |
|
return x |
|
|
|
for col in original_df.columns: |
|
if col == "model": |
|
original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) |
|
else: |
|
original_df[col] = original_df[col].apply(formatter) |
|
whisper_df[col] = whisper_df[col].apply(formatter) |
|
original_df.rename(columns=column_names, inplace=True) |
|
original_df.sort_values(by='Average WER β¬οΈ', inplace=True) |
|
whisper_df.rename(columns=whisper_column_names, inplace=True) |
|
whisper_df.sort_values(by='Average WER β¬οΈ', inplace=True) |
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn)] |
|
TYPES = [c.type for c in fields(AutoEvalColumn)] |
|
|
|
|
|
def request_model(model_text, chbcoco2017): |
|
|
|
|
|
dataset_selection = [] |
|
if chbcoco2017: |
|
dataset_selection.append("ESB Datasets tests only") |
|
|
|
if len(dataset_selection) == 0: |
|
return styled_error("You need to select at least one dataset") |
|
|
|
base_model_on_hub, error_msg = is_model_on_hub(model_text) |
|
|
|
if not base_model_on_hub: |
|
return styled_error(f"Base model '{model_text}' {error_msg}") |
|
|
|
|
|
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") |
|
required_datasets = ', '.join(dataset_selection) |
|
eval_entry = { |
|
"date": current_time, |
|
"model": model_text, |
|
"datasets_selected": required_datasets |
|
} |
|
|
|
|
|
DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True) |
|
|
|
fn_datasets = '@ '.join(dataset_selection) |
|
filename = model_text.replace("/","@") + "@@" + fn_datasets |
|
if filename in requested_models: |
|
return styled_error(f"A request for this model '{model_text}' and dataset(s) was already made.") |
|
try: |
|
filename_ext = filename + ".txt" |
|
out_filepath = DIR_OUTPUT_REQUESTS / filename_ext |
|
|
|
|
|
with open(out_filepath, "w") as f: |
|
f.write(json.dumps(eval_entry)) |
|
|
|
upload_file(filename, out_filepath) |
|
|
|
|
|
requested_models.append(filename) |
|
|
|
|
|
out_filepath.unlink() |
|
|
|
return styled_message("π€ Your request has been submitted and will be evaluated soon!</p>") |
|
except Exception as e: |
|
return styled_error(f"Error submitting request!") |
|
|
|
with gr.Blocks(css=LEADERBOARD_CSS) as demo: |
|
gr.HTML(BANNER, elem_id="banner") |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
Leaderboard", elem_id="od-benchmark-tab-table", id=0): |
|
leaderboard_table = gr.components.Dataframe( |
|
value=original_df, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
) |
|
with gr.TabItem("π Whisper Model Leaderboard", elem_id="whisper-backends-tab", id=1): |
|
gr.Markdown("## Whisper Model Performance Across Different Backends", elem_classes="markdown-text") |
|
gr.Markdown("This table shows how different Whisper model implementations compare in terms of performance and speed.", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
backend_filter = gr.Dropdown( |
|
choices=["All"] + sorted(whisper_df["Backend"].unique().tolist()), |
|
value="All", |
|
label="Filter by Backend", |
|
elem_id="backend-filter", |
|
multiselect=True |
|
) |
|
device_choices = ["All"] + sorted(whisper_df["Device"].unique().tolist()) if "Device" in whisper_df.columns else ["All"] |
|
device_filter = gr.Dropdown( |
|
choices=device_choices, |
|
value="All", |
|
label="Filter by Device", |
|
elem_id="device-filter", |
|
multiselect=True |
|
) |
|
|
|
whisper_table = gr.components.Dataframe( |
|
value=whisper_df, |
|
datatype=TYPES, |
|
elem_id="whisper-table", |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
def filter_whisper_table(backends, devices): |
|
filtered_df = whisper_df.copy() |
|
|
|
|
|
if backends and "All" not in backends: |
|
filtered_df = filtered_df[filtered_df["Backend"].isin(backends)] |
|
|
|
|
|
if devices and "All" not in devices and "Device" in filtered_df.columns: |
|
filtered_df = filtered_df[filtered_df["Device"].isin(devices)] |
|
|
|
return filtered_df |
|
|
|
backend_filter.change( |
|
filter_whisper_table, |
|
inputs=[backend_filter, device_filter], |
|
outputs=whisper_table |
|
) |
|
device_filter.change( |
|
filter_whisper_table, |
|
inputs=[backend_filter, device_filter], |
|
outputs=whisper_table |
|
) |
|
with gr.TabItem("π Metrics", elem_id="od-benchmark-tab-table", id=2): |
|
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("βοΈβ¨ Request a model here!", elem_id="od-benchmark-tab-table", id=3): |
|
with gr.Column(): |
|
gr.Markdown("# βοΈβ¨ Request results for a new model here!", elem_classes="markdown-text") |
|
with gr.Column(): |
|
gr.Markdown("Select a dataset:", elem_classes="markdown-text") |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)") |
|
chb_coco2017 = gr.Checkbox(label="COCO validation 2017 dataset", visible=False, value=True, interactive=False) |
|
with gr.Column(): |
|
mdw_submission_result = gr.Markdown() |
|
btn_submitt = gr.Button(value="π Request") |
|
btn_submitt.click(request_model, |
|
[model_name_textbox, chb_coco2017], |
|
mdw_submission_result) |
|
|
|
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
gr.Textbox( |
|
value=CITATION_TEXT, lines=7, |
|
label="Copy the BibTeX snippet to cite this source", |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
demo.launch(ssr_mode=False) |
|
|