Spaces:
Runtime error
Runtime error
SudhanshuBlaze
commited on
Commit
•
a0dedd5
1
Parent(s):
dc4c2a5
Upload 2 files
Browse files- app.py +62 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
import tensorflow_hub as hub
|
7 |
+
|
8 |
+
st.title("Fast Neural image style transfer")
|
9 |
+
st.write("Streamlit demo for Fast arbitrary image style transfer using a pretrained Image Stylization model from TensorFlow Hub. To use it, simply upload a content image and style image. To learn more about the project, please find the references listed below.")
|
10 |
+
|
11 |
+
# Load image stylization module.
|
12 |
+
@st.cache(allow_output_mutation=True)
|
13 |
+
def load_model():
|
14 |
+
return hub.load("https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2")
|
15 |
+
|
16 |
+
style_transfer_model = load_model()
|
17 |
+
|
18 |
+
def perform_style_transfer(content_image, style_image):
|
19 |
+
# Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]
|
20 |
+
content_image = tf.convert_to_tensor(content_image, np.float32)[tf.newaxis, ...] / 255.
|
21 |
+
style_image = tf.convert_to_tensor(style_image, np.float32)[tf.newaxis, ...] / 255.
|
22 |
+
|
23 |
+
output = style_transfer_model(content_image, style_image)
|
24 |
+
stylized_image = output[0]
|
25 |
+
|
26 |
+
return Image.fromarray(np.uint8(stylized_image[0] * 255))
|
27 |
+
|
28 |
+
# Upload content and style images.
|
29 |
+
content_image = st.file_uploader("Upload a content image")
|
30 |
+
style_image = st.file_uploader("Upload a style image")
|
31 |
+
|
32 |
+
# default images
|
33 |
+
st.write("Or you can choose from the following examples")
|
34 |
+
col1, col2, col3 = st.columns(3)
|
35 |
+
|
36 |
+
if col2.button("Joshua Tree"):
|
37 |
+
content_image = "joshua_tree.jpeg"
|
38 |
+
style_image = "starry_night.jpeg"
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
if style_image and content_image is not None:
|
43 |
+
col1, col2 = st.columns(2)
|
44 |
+
|
45 |
+
content_image = Image.open(content_image)
|
46 |
+
# It is recommended that the style image is about 256 pixels (this size was used when training the style transfer network).
|
47 |
+
style_image = Image.open(style_image).resize((256, 256))
|
48 |
+
|
49 |
+
output_image=perform_style_transfer(content_image, style_image)
|
50 |
+
|
51 |
+
col1.header("Content Image")
|
52 |
+
col1.image(content_image, use_column_width=True)
|
53 |
+
col2.header("Style Image")
|
54 |
+
col2.image(style_image, use_column_width=True)
|
55 |
+
|
56 |
+
st.header("Output: Style transfer Image")
|
57 |
+
st.image(output_image, use_column_width=True)
|
58 |
+
|
59 |
+
# scroll down to see the references
|
60 |
+
st.markdown("**References**")
|
61 |
+
st.markdown("<a href='https://www.tensorflow.org/hub/tutorials/tf2_arbitrary_image_stylization' target='_blank'>1. Tutorial to implement Fast Neural Style Transfer using the pretrained model from TensorFlow Hub</a> \n", unsafe_allow_html=True)
|
62 |
+
st.markdown("<a href='https://huggingface.co/spaces/luca-martial/neural-style-transfer' target='_blank'>2. The idea to build a neural style transfer application was inspired from this Hugging Face Space </a>", unsafe_allow_html=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.21.2
|
2 |
+
tensorflow==2.11.0
|
3 |
+
tensorflow_hub==0.12.0
|