import streamlit as st from transformers import pipeline from PIL import Image import numpy as np import tensorflow as tf import tensorflow_hub as hub st.title("Fast Neural image style transfer") st.write("Streamlit demo for Fast arbitrary image style transfer using a pretrained Image Stylization model from TensorFlow Hub. To use it, simply upload a content image and style image. To learn more about the project, please find the references listed below.") # Load image stylization module. @st.cache(allow_output_mutation=True) def load_model(): return hub.load("https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2") style_transfer_model = load_model() def perform_style_transfer(content_image, style_image): # Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1] content_image = tf.convert_to_tensor(content_image, np.float32)[tf.newaxis, ...] / 255. style_image = tf.convert_to_tensor(style_image, np.float32)[tf.newaxis, ...] / 255. output = style_transfer_model(content_image, style_image) stylized_image = output[0] return Image.fromarray(np.uint8(stylized_image[0] * 255)) # Upload content and style images. content_image = st.file_uploader("Upload a content image") style_image = st.file_uploader("Upload a style image") # default images st.write("Or you can choose from the following examples") col1, col2, col3 = st.columns(3) if col2.button("Joshua Tree"): content_image = "joshua_tree.jpeg" style_image = "starry_night.jpeg" if style_image and content_image is not None: col1, col2 = st.columns(2) content_image = Image.open(content_image) # It is recommended that the style image is about 256 pixels (this size was used when training the style transfer network). style_image = Image.open(style_image).resize((256, 256)) output_image=perform_style_transfer(content_image, style_image) col1.header("Content Image") col1.image(content_image, use_column_width=True) col2.header("Style Image") col2.image(style_image, use_column_width=True) st.header("Output: Style transfer Image") st.image(output_image, use_column_width=True) # scroll down to see the references st.markdown("**References**") st.markdown("1. Tutorial to implement Fast Neural Style Transfer using the pretrained model from TensorFlow Hub \n", unsafe_allow_html=True) st.markdown("2. The idea to build a neural style transfer application was inspired from this Hugging Face Space ", unsafe_allow_html=True)