Spaces:
Runtime error
Runtime error
File size: 2,301 Bytes
63337f5 7d0a6ff 11ef280 63337f5 c312545 50594e4 6f9cc9b 7de3632 63337f5 7de3632 99ae6df 63337f5 30bc38f 63337f5 c312545 63337f5 e89f971 db38720 63337f5 db38720 ea3e528 0c332ef db38720 63337f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from transformers import T5Tokenizer, T5ForConditionalGeneration
from transformers import pipeline
import torch
import base64
import tempfile
import os
checkpoint = "MBZUAI/LaMini-Flan-T5-248M"
#model and tokenizer loading
tokenizer = T5Tokenizer.from_pretrained(checkpoint)
with tempfile.TemporaryDirectory() as offload_folder:
base_model = T5ForConditionalGeneration.from_pretrained(checkpoint, device_map='auto', torch_dtype=torch.float32, offload_folder=offload_folder)
#file loader and preprocessing
def file_preprocessing(file):
loader = PyPDFLoader(file)
pages = loader.load_and_split()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
texts = text_splitter.split_documents(pages)
final_texts = ""
for text in texts:
print(text)
final_texts = final_texts + text.page_content
return final_texts
#LLM pipeline
def llm_pipeline(filepath):
pipe_sum = pipeline(
'summarization',
model = base_model,
tokenizer = tokenizer,
max_length = 500,
min_length = 50)
input_text = file_preprocessing(filepath)
result = pipe_sum(input_text)
result = result[0]['summary_text']
return result
def main():
st.title("Document Summarization App")
uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf'])
if uploaded_file is not None:
if st.button("Summarize"):
col2 = st.columns(1)
# Use a temporary filename directly
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(uploaded_file.read())
temp_file.flush() # Ensure contents are written to disk
filepath = temp_file.name
try:
summary = llm_pipeline(filepath)
st.success(summary) # Display only the summary
except Exception as e:
st.error(f"An error occurred during summarization: {e}")
# Clean up the temporary file
os.remove(filepath)
if __name__ == "__main__":
main() |