Spaces:
Runtime error
Runtime error
import streamlit as st | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.document_loaders import PyPDFLoader | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
from transformers import pipeline | |
import torch | |
import base64 | |
#import os | |
#from dotenv import load_dotenv | |
#from huggingface_hub import HfApi | |
#api = HfApi() | |
#token = api.retrieve_token("secret_token") # Replace with your secret name | |
#load_dotenv() | |
#token = os.environ.get("HF_TOKEN") | |
checkpoint = "MBZUAI/LaMini-Flan-T5-248M" | |
#model and tokenizer loading | |
tokenizer = T5Tokenizer.from_pretrained(checkpoint) | |
base_model = T5ForConditionalGeneration.from_pretrained(checkpoint, device_map='auto', torch_dtype=torch.float32, offload_folder='D:/project/offload') | |
#file loader and preprocessing | |
def file_preprocessing(file): | |
loader = PyPDFLoader(file) | |
pages = loader.load_and_split() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50) | |
texts = text_splitter.split_documents(pages) | |
final_texts = "" | |
for text in texts: | |
print(text) | |
final_texts = final_texts + text.page_content | |
return final_texts | |
#LLM pipeline | |
def llm_pipeline(filepath): | |
pipe_sum = pipeline( | |
'summarization', | |
model = base_model, | |
tokenizer = tokenizer, | |
max_length = 500, | |
min_length = 50) | |
input_text = file_preprocessing(filepath) | |
result = pipe_sum(input_text) | |
result = result[0]['summary_text'] | |
return result | |
#function to display the PDF of a given file | |
def displayPDF(file): | |
# Opening file from file path | |
with open(file, "rb") as f: | |
base64_pdf = base64.b64encode(f.read()).decode('utf-8') | |
# Embedding PDF in HTML | |
pdf_display = F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>' | |
# Displaying File | |
st.markdown(pdf_display, unsafe_allow_html=True) | |
#streamlit code | |
st.set_page_config(layout="wide") | |
def main(): | |
st.title("Document Summarization App using Language Model") | |
uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf']) | |
if uploaded_file is not None: | |
if st.button("Summarize"): | |
col1, col2 = st.columns(2) | |
filepath = "data/"+uploaded_file.name | |
with open(filepath, "wb") as temp_file: | |
temp_file.write(uploaded_file.read()) | |
with col1: | |
st.info("Uploaded File") | |
pdf_view = displayPDF(filepath) | |
with col2: | |
summary = llm_pipeline(filepath) | |
st.info("Summarization Complete") | |
st.success(summary) | |
if __name__ == "__main__": | |
main() |