File size: 5,368 Bytes
56228ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from math import pi
import torch
from torch import nn
from einops import rearrange, repeat
import logging

def broadcat(tensors, dim = -1):
    num_tensors = len(tensors)
    shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
    assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
    shape_len = list(shape_lens)[0]
    dim = (dim + shape_len) if dim < 0 else dim
    dims = list(zip(*map(lambda t: list(t.shape), tensors)))
    expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
    assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
    max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
    expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
    expanded_dims.insert(dim, (dim, dims[dim]))
    expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
    tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
    return torch.cat(tensors, dim = dim)

def rotate_half(x):
    x = rearrange(x, '... (d r) -> ... d r', r = 2)
    x1, x2 = x.unbind(dim = -1)
    x = torch.stack((-x2, x1), dim = -1)
    return rearrange(x, '... d r -> ... (d r)')


class VisionRotaryEmbedding(nn.Module):
    def __init__(
        self,
        dim,
        pt_seq_len,
        ft_seq_len=None,
        custom_freqs = None,
        freqs_for = 'lang',
        theta = 10000,
        max_freq = 10,
        num_freqs = 1,
    ):
        super().__init__()
        if custom_freqs:
            freqs = custom_freqs
        elif freqs_for == 'lang':
            freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
        elif freqs_for == 'pixel':
            freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
        elif freqs_for == 'constant':
            freqs = torch.ones(num_freqs).float()
        else:
            raise ValueError(f'unknown modality {freqs_for}')

        if ft_seq_len is None: ft_seq_len = pt_seq_len
        t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len

        freqs_h = torch.einsum('..., f -> ... f', t, freqs)
        freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2)

        freqs_w = torch.einsum('..., f -> ... f', t, freqs)
        freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2)

        freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1) 

        self.register_buffer("freqs_cos", freqs.cos())
        self.register_buffer("freqs_sin", freqs.sin())

        logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')

    def forward(self, t, start_index = 0):
        rot_dim = self.freqs_cos.shape[-1]
        end_index = start_index + rot_dim
        assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}'
        t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:]
        t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)

        return torch.cat((t_left, t, t_right), dim = -1)

class VisionRotaryEmbeddingFast(nn.Module):
    def __init__(
        self,
        dim,
        pt_seq_len,
        ft_seq_len=None,
        custom_freqs = None,
        freqs_for = 'lang',
        theta = 10000,
        max_freq = 10,
        num_freqs = 1,
        patch_dropout = 0.
    ):
        super().__init__()
        if custom_freqs:
            freqs = custom_freqs
        elif freqs_for == 'lang':
            freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
        elif freqs_for == 'pixel':
            freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
        elif freqs_for == 'constant':
            freqs = torch.ones(num_freqs).float()
        else:
            raise ValueError(f'unknown modality {freqs_for}')

        if ft_seq_len is None: ft_seq_len = pt_seq_len
        t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len

        freqs = torch.einsum('..., f -> ... f', t, freqs)
        freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
        freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)

        freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
        freqs_sin = freqs.sin().view(-1, freqs.shape[-1])

        self.patch_dropout = patch_dropout

        self.register_buffer("freqs_cos", freqs_cos)
        self.register_buffer("freqs_sin", freqs_sin)

        logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')

    def forward(self, t, patch_indices_keep=None):
        if patch_indices_keep is not None:
            batch = t.size()[0]
            batch_indices = torch.arange(batch)
            batch_indices = batch_indices[..., None]

            freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
            freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])

            freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
            freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
            freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
            freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')

            return  t * freqs_cos + rotate_half(t) * freqs_sin

        return  t * self.freqs_cos + rotate_half(t) * self.freqs_sin