ToonMage / app.py
SunderAli17's picture
Update app.py
1fbb135 verified
raw
history blame
10.5 kB
import spaces
import time
import os
import gradio as gr
import torch
from einops import rearrange
from PIL import Image
from flux.details import SamplingOptions
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
from flux.util import load_ae, load_clip, load_flow_model, load_t5
from eva_clip.model_configs.fluxpipeline import ToonMagePipeline
from toonmage.utils import resize_numpy_image_long
def get_models(name: str, device: torch.device, offload: bool):
t5 = load_t5(device, max_length=128)
clip = load_clip(device)
model = load_flow_model(name, device="cpu" if offload else device)
model.eval()
ae = load_ae(name, device="cpu" if offload else device)
return model, ae, t5, clip
class FluxGenerator:
def __init__(self):
self.device = torch.device('cuda')
self.offload = False
self.model_name = 'flux-dev'
self.model, self.ae, self.t5, self.clip = get_models(
self.model_name,
device=self.device,
offload=self.offload,
)
self.toonmage_model = ToonMagePipeline(self.model, 'cuda', weight_dtype=torch.bfloat16)
self.toonmage_model.load_pretrain()
flux_generator = FluxGenerator()
@spaces.GPU
@torch.inference_mode()
def generate_image(
width,
height,
num_steps,
start_step,
guidance,
seed,
prompt,
id_image=None,
id_weight=1.0,
neg_prompt="",
true_cfg=1.0,
timestep_to_start_cfg=1,
max_sequence_length=128,
):
flux_generator.t5.max_length = max_sequence_length
seed = int(seed)
if seed == -1:
seed = None
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
if opts.seed is None:
opts.seed = torch.Generator(device="cpu").seed()
print(f"Generating '{opts.prompt}' with seed {opts.seed}")
t0 = time.perf_counter()
use_true_cfg = abs(true_cfg - 1.0) > 1e-2
if id_image is not None:
id_image = resize_numpy_image_long(id_image, 1024)
id_embeddings, uncond_id_embeddings = flux_generator.toonmage_model.get_id_embedding(id_image, cal_uncond=use_true_cfg)
else:
id_embeddings = None
uncond_id_embeddings = None
print(id_embeddings)
# prepare input
x = get_noise(
1,
opts.height,
opts.width,
device=flux_generator.device,
dtype=torch.bfloat16,
seed=opts.seed,
)
print(x)
timesteps = get_schedule(
opts.num_steps,
x.shape[-1] * x.shape[-2] // 4,
shift=True,
)
if flux_generator.offload:
flux_generator.t5, flux_generator.clip = flux_generator.t5.to(flux_generator.device), flux_generator.clip.to(flux_generator.device)
inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip, img=x, prompt=opts.prompt)
inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip, img=x, prompt=neg_prompt) if use_true_cfg else None
# offload TEs to CPU, load model to gpu
if flux_generator.offload:
flux_generator.t5, flux_generator.clip = flux_generator.t5.cpu(), flux_generator.clip.cpu()
torch.cuda.empty_cache()
flux_generator.model = flux_generator.model.to(flux_generator.device)
# denoise initial noise
x = denoise(
flux_generator.model, **inp, timesteps=timesteps, guidance=opts.guidance, id=id_embeddings, id_weight=id_weight,
start_step=start_step, uncond_id=uncond_id_embeddings, true_cfg=true_cfg,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=inp_neg["txt"] if use_true_cfg else None,
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None,
neg_vec=inp_neg["vec"] if use_true_cfg else None,
)
# offload model, load autoencoder to gpu
if flux_generator.offload:
flux_generator.model.cpu()
torch.cuda.empty_cache()
flux_generator.ae.decoder.to(x.device)
# decode latents to pixel space
x = unpack(x.float(), opts.height, opts.width)
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16):
x = flux_generator.ae.decode(x)
if flux_generator.offload:
flux_generator.ae.decoder.cpu()
torch.cuda.empty_cache()
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s.")
# bring into PIL format
x = x.clamp(-1, 1)
# x = embed_watermark(x.float())
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
return img, str(opts.seed), flux_generator.toonmage_model.debug_img_list
MARKDOWN = """
This demo utilizes <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev">FLUX Pipeline</a> for Image to Image Translation
**Tips**
- Smaller value of timestep to start inserting ID would lead to higher fidelity, however, it will reduce the editability; and vice versa.
Its value range is from 0 - 4. If you want to generate a stylized scene; use the value of 0 - 1. If you want to generate a photorealistic image; use the value of 4.
-It is recommended to use fake CFG by setting the true CFG scale value to 1 while you can vary the guidance scale. However, in a few cases, utilizing a true CFG can yield better results.
Try out with different prompts using your image and do provide your feedback.
**Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [X](https://x.com/SunderAKhowaja) -[Github](https://github.com/sander-ali) -[Hugging Face](https://huggingface.co/SunderAli17)**
"""
theme = gr.themes.Soft(
font=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
def create_demo(args, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False):
with gr.Blocks(s = js_func, theme = theme) as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="portrait, color, cinematic")
id_image = gr.Image(label="ID Image")
id_weight = gr.Slider(0.0, 3.0, 1, step=0.05, label="id weight")
width = gr.Slider(256, 1536, 896, step=16, label="Width")
height = gr.Slider(256, 1536, 1152, step=16, label="Height")
num_steps = gr.Slider(1, 20, 20, step=1, label="Number of steps")
start_step = gr.Slider(0, 10, 0, step=1, label="timestep to start inserting ID")
guidance = gr.Slider(1.0, 10.0, 4, step=0.1, label="Guidance")
seed = gr.Textbox(-1, label="Seed (-1 for random)")
max_sequence_length = gr.Slider(128, 512, 128, step=128,
label="max_sequence_length for prompt (T5), small will be faster")
with gr.Accordion("Advanced Options (True CFG, true_cfg_scale=1 means use fake CFG, >1 means use true CFG, if using true CFG, we recommend set the guidance scale to 1)", open=False): # noqa E501
neg_prompt = gr.Textbox(
label="Negative Prompt",
value="bad quality, worst quality, text, signature, watermark, extra limbs")
true_cfg = gr.Slider(1.0, 10.0, 1, step=0.1, label="true CFG scale")
timestep_to_start_cfg = gr.Slider(0, 20, 1, step=1, label="timestep to start cfg", visible=args.dev)
generate_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(label="Generated Image")
seed_output = gr.Textbox(label="Used Seed")
intermediate_output = gr.Gallery(label='Output', elem_id="gallery", visible=args.dev)
with gr.Row(), gr.Column():
gr.Markdown("## Examples")
example_inps = [
[
'a high quality digital cartoon avatar eating ice cream',
'sample_img/image1.png',
0, 4, -1, 1
],
[
'a high quality anime character with mountains and lakes in the background',
'sample_img/test1.jpg',
0, 4, -1, 1
],
[
'a high quality photorealistic image with VR technology atmosphere, revolutionary exceptional magnum with remarkable details',
'sample_img/test24.jpg',
0, 4, -1, 1
]
]
gr.Examples(examples=example_inps, inputs=[prompt, id_image, start_step, guidance, seed, true_cfg],
label='fake CFG')
generate_btn.click(
fn=generate_image,
inputs=[width, height, num_steps, start_step, guidance, seed, prompt, id_image, id_weight, neg_prompt,
true_cfg, timestep_to_start_cfg, max_sequence_length],
outputs=[output_image, seed_output, intermediate_output],
)
return demo
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="ToonMage with FLUX")
parser.add_argument("--name", type=str, default="flux-dev", choices=list('flux-dev'),
help="currently only support flux-dev")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
help="Device to use")
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
parser.add_argument("--port", type=int, default=8080, help="Port to use")
parser.add_argument("--dev", action='store_true', help="Development mode")
parser.add_argument("--pretrained_model", type=str, help='for development')
args = parser.parse_args()
import huggingface_hub
huggingface_hub.login(os.getenv('HF_TOKEN'))
demo = create_demo(args, args.name, args.device, args.offload)
demo.launch()