Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import time | |
import os | |
import gradio as gr | |
import torch | |
from einops import rearrange | |
from PIL import Image | |
from flux.details import SamplingOptions | |
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack | |
from flux.util import load_ae, load_clip, load_flow_model, load_t5 | |
from eva_clip.model_configs.fluxpipeline import ToonMagePipeline | |
from toonmage.utils import resize_numpy_image_long | |
def get_models(name: str, device: torch.device, offload: bool): | |
t5 = load_t5(device, max_length=128) | |
clip = load_clip(device) | |
model = load_flow_model(name, device="cpu" if offload else device) | |
model.eval() | |
ae = load_ae(name, device="cpu" if offload else device) | |
return model, ae, t5, clip | |
class FluxGenerator: | |
def __init__(self): | |
self.device = torch.device('cuda') | |
self.offload = False | |
self.model_name = 'flux-dev' | |
self.model, self.ae, self.t5, self.clip = get_models( | |
self.model_name, | |
device=self.device, | |
offload=self.offload, | |
) | |
self.toonmage_model = ToonMagePipeline(self.model, 'cuda', weight_dtype=torch.bfloat16) | |
self.toonmage_model.load_pretrain() | |
flux_generator = FluxGenerator() | |
def generate_image( | |
width, | |
height, | |
num_steps, | |
start_step, | |
guidance, | |
seed, | |
prompt, | |
id_image=None, | |
id_weight=1.0, | |
neg_prompt="", | |
true_cfg=1.0, | |
timestep_to_start_cfg=1, | |
max_sequence_length=128, | |
): | |
flux_generator.t5.max_length = max_sequence_length | |
seed = int(seed) | |
if seed == -1: | |
seed = None | |
opts = SamplingOptions( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_steps=num_steps, | |
guidance=guidance, | |
seed=seed, | |
) | |
if opts.seed is None: | |
opts.seed = torch.Generator(device="cpu").seed() | |
print(f"Generating '{opts.prompt}' with seed {opts.seed}") | |
t0 = time.perf_counter() | |
use_true_cfg = abs(true_cfg - 1.0) > 1e-2 | |
if id_image is not None: | |
id_image = resize_numpy_image_long(id_image, 1024) | |
id_embeddings, uncond_id_embeddings = flux_generator.toonmage_model.get_id_embedding(id_image, cal_uncond=use_true_cfg) | |
else: | |
id_embeddings = None | |
uncond_id_embeddings = None | |
print(id_embeddings) | |
# prepare input | |
x = get_noise( | |
1, | |
opts.height, | |
opts.width, | |
device=flux_generator.device, | |
dtype=torch.bfloat16, | |
seed=opts.seed, | |
) | |
print(x) | |
timesteps = get_schedule( | |
opts.num_steps, | |
x.shape[-1] * x.shape[-2] // 4, | |
shift=True, | |
) | |
if flux_generator.offload: | |
flux_generator.t5, flux_generator.clip = flux_generator.t5.to(flux_generator.device), flux_generator.clip.to(flux_generator.device) | |
inp = prepare(t5=flux_generator.t5, clip=flux_generator.clip, img=x, prompt=opts.prompt) | |
inp_neg = prepare(t5=flux_generator.t5, clip=flux_generator.clip, img=x, prompt=neg_prompt) if use_true_cfg else None | |
# offload TEs to CPU, load model to gpu | |
if flux_generator.offload: | |
flux_generator.t5, flux_generator.clip = flux_generator.t5.cpu(), flux_generator.clip.cpu() | |
torch.cuda.empty_cache() | |
flux_generator.model = flux_generator.model.to(flux_generator.device) | |
# denoise initial noise | |
x = denoise( | |
flux_generator.model, **inp, timesteps=timesteps, guidance=opts.guidance, id=id_embeddings, id_weight=id_weight, | |
start_step=start_step, uncond_id=uncond_id_embeddings, true_cfg=true_cfg, | |
timestep_to_start_cfg=timestep_to_start_cfg, | |
neg_txt=inp_neg["txt"] if use_true_cfg else None, | |
neg_txt_ids=inp_neg["txt_ids"] if use_true_cfg else None, | |
neg_vec=inp_neg["vec"] if use_true_cfg else None, | |
) | |
# offload model, load autoencoder to gpu | |
if flux_generator.offload: | |
flux_generator.model.cpu() | |
torch.cuda.empty_cache() | |
flux_generator.ae.decoder.to(x.device) | |
# decode latents to pixel space | |
x = unpack(x.float(), opts.height, opts.width) | |
with torch.autocast(device_type=flux_generator.device.type, dtype=torch.bfloat16): | |
x = flux_generator.ae.decode(x) | |
if flux_generator.offload: | |
flux_generator.ae.decoder.cpu() | |
torch.cuda.empty_cache() | |
t1 = time.perf_counter() | |
print(f"Done in {t1 - t0:.1f}s.") | |
# bring into PIL format | |
x = x.clamp(-1, 1) | |
# x = embed_watermark(x.float()) | |
x = rearrange(x[0], "c h w -> h w c") | |
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy()) | |
return img, str(opts.seed), flux_generator.toonmage_model.debug_img_list | |
MARKDOWN = """ | |
This demo utilizes <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev">FLUX Pipeline</a> for Image to Image Translation | |
**Tips** | |
- Smaller value of timestep to start inserting ID would lead to higher fidelity, however, it will reduce the editability; and vice versa. | |
Its value range is from 0 - 4. If you want to generate a stylized scene; use the value of 0 - 1. If you want to generate a photorealistic image; use the value of 4. | |
-It is recommended to use fake CFG by setting the true CFG scale value to 1 while you can vary the guidance scale. However, in a few cases, utilizing a true CFG can yield better results. | |
Try out with different prompts using your image and do provide your feedback. | |
**Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [X](https://x.com/SunderAKhowaja) -[Github](https://github.com/sander-ali) -[Hugging Face](https://huggingface.co/SunderAli17)** | |
""" | |
theme = gr.themes.Soft( | |
font=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
) | |
js_func = """ | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'dark') { | |
url.searchParams.set('__theme', 'dark'); | |
window.location.href = url.href; | |
} | |
} | |
""" | |
def create_demo(args, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu", | |
offload: bool = False): | |
with gr.Blocks(s = js_func, theme = theme) as demo: | |
gr.Markdown(MARKDOWN) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", value="portrait, color, cinematic") | |
id_image = gr.Image(label="ID Image") | |
id_weight = gr.Slider(0.0, 3.0, 1, step=0.05, label="id weight") | |
width = gr.Slider(256, 1536, 896, step=16, label="Width") | |
height = gr.Slider(256, 1536, 1152, step=16, label="Height") | |
num_steps = gr.Slider(1, 20, 20, step=1, label="Number of steps") | |
start_step = gr.Slider(0, 10, 0, step=1, label="timestep to start inserting ID") | |
guidance = gr.Slider(1.0, 10.0, 4, step=0.1, label="Guidance") | |
seed = gr.Textbox(-1, label="Seed (-1 for random)") | |
max_sequence_length = gr.Slider(128, 512, 128, step=128, | |
label="max_sequence_length for prompt (T5), small will be faster") | |
with gr.Accordion("Advanced Options (True CFG, true_cfg_scale=1 means use fake CFG, >1 means use true CFG, if using true CFG, we recommend set the guidance scale to 1)", open=False): # noqa E501 | |
neg_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value="bad quality, worst quality, text, signature, watermark, extra limbs") | |
true_cfg = gr.Slider(1.0, 10.0, 1, step=0.1, label="true CFG scale") | |
timestep_to_start_cfg = gr.Slider(0, 20, 1, step=1, label="timestep to start cfg", visible=args.dev) | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
output_image = gr.Image(label="Generated Image") | |
seed_output = gr.Textbox(label="Used Seed") | |
intermediate_output = gr.Gallery(label='Output', elem_id="gallery", visible=args.dev) | |
with gr.Row(), gr.Column(): | |
gr.Markdown("## Examples") | |
example_inps = [ | |
[ | |
'a high quality digital cartoon avatar eating ice cream', | |
'sample_img/image1.png', | |
0, 4, -1, 1 | |
], | |
[ | |
'a high quality anime character with mountains and lakes in the background', | |
'sample_img/test1.jpg', | |
0, 4, -1, 1 | |
], | |
[ | |
'a high quality photorealistic image with VR technology atmosphere, revolutionary exceptional magnum with remarkable details', | |
'sample_img/test24.jpg', | |
0, 4, -1, 1 | |
] | |
] | |
gr.Examples(examples=example_inps, inputs=[prompt, id_image, start_step, guidance, seed, true_cfg], | |
label='fake CFG') | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[width, height, num_steps, start_step, guidance, seed, prompt, id_image, id_weight, neg_prompt, | |
true_cfg, timestep_to_start_cfg, max_sequence_length], | |
outputs=[output_image, seed_output, intermediate_output], | |
) | |
return demo | |
if __name__ == "__main__": | |
import argparse | |
parser = argparse.ArgumentParser(description="ToonMage with FLUX") | |
parser.add_argument("--name", type=str, default="flux-dev", choices=list('flux-dev'), | |
help="currently only support flux-dev") | |
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", | |
help="Device to use") | |
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use") | |
parser.add_argument("--port", type=int, default=8080, help="Port to use") | |
parser.add_argument("--dev", action='store_true', help="Development mode") | |
parser.add_argument("--pretrained_model", type=str, help='for development') | |
args = parser.parse_args() | |
import huggingface_hub | |
huggingface_hub.login(os.getenv('HF_TOKEN')) | |
demo = create_demo(args, args.name, args.device, args.offload) | |
demo.launch() |