Spaces:
Running
on
Zero
Running
on
Zero
rom dataclasses import dataclass | |
import torch | |
from einops import rearrange | |
from torch import Tensor, nn | |
class AutoEncoderParams: | |
resolution: int | |
in_channels: int | |
ch: int | |
out_ch: int | |
ch_mult: list[int] | |
num_res_blocks: int | |
z_channels: int | |
scale_factor: float | |
shift_factor: float | |
def swish(x: Tensor) -> Tensor: | |
return x * torch.sigmoid(x) | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels: int): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1) | |
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1) | |
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1) | |
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1) | |
def attention(self, h_: Tensor) -> Tensor: | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
b, c, h, w = q.shape | |
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous() | |
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous() | |
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous() | |
h_ = nn.functional.scaled_dot_product_attention(q, k, v) | |
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b) | |
def forward(self, x: Tensor) -> Tensor: | |
return x + self.proj_out(self.attention(x)) | |
class ResnetBlock(nn.Module): | |
def __init__(self, in_channels: int, out_channels: int): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True) | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if self.in_channels != self.out_channels: | |
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, x): | |
h = x | |
h = self.norm1(h) | |
h = swish(h) | |
h = self.conv1(h) | |
h = self.norm2(h) | |
h = swish(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
x = self.nin_shortcut(x) | |
return x + h | |
class Downsample(nn.Module): | |
def __init__(self, in_channels: int): | |
super().__init__() | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) | |
def forward(self, x: Tensor): | |
pad = (0, 1, 0, 1) | |
x = nn.functional.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
return x | |
class Upsample(nn.Module): | |
def __init__(self, in_channels: int): | |
super().__init__() | |
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) | |
def forward(self, x: Tensor): | |
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
x = self.conv(x) | |
return x | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
resolution: int, | |
in_channels: int, | |
ch: int, | |
ch_mult: list[int], | |
num_res_blocks: int, | |
z_channels: int, | |
): | |
super().__init__() | |
self.ch = ch | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
# downsampling | |
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) | |
curr_res = resolution | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.in_ch_mult = in_ch_mult | |
self.down = nn.ModuleList() | |
block_in = self.ch | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch * in_ch_mult[i_level] | |
block_out = ch * ch_mult[i_level] | |
for _ in range(self.num_res_blocks): | |
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) | |
block_in = block_out | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions - 1: | |
down.downsample = Downsample(block_in) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) | |
self.mid.attn_1 = AttnBlock(block_in) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) | |
# end | |
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) | |
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1) | |
def forward(self, x: Tensor) -> Tensor: | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1]) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions - 1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h) | |
# end | |
h = self.norm_out(h) | |
h = swish(h) | |
h = self.conv_out(h) | |
return h | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
ch: int, | |
out_ch: int, | |
ch_mult: list[int], | |
num_res_blocks: int, | |
in_channels: int, | |
resolution: int, | |
z_channels: int, | |
): | |
super().__init__() | |
self.ch = ch | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.ffactor = 2 ** (self.num_resolutions - 1) | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
self.z_shape = (1, z_channels, curr_res, curr_res) | |
# z to block_in | |
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) | |
self.mid.attn_1 = AttnBlock(block_in) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for _ in range(self.num_res_blocks + 1): | |
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) | |
block_in = block_out | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) | |
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) | |
def forward(self, z: Tensor) -> Tensor: | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
h = self.norm_out(h) | |
h = swish(h) | |
h = self.conv_out(h) | |
return h | |
class DiagonalGaussian(nn.Module): | |
def __init__(self, sample: bool = True, chunk_dim: int = 1): | |
super().__init__() | |
self.sample = sample | |
self.chunk_dim = chunk_dim | |
def forward(self, z: Tensor) -> Tensor: | |
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim) | |
if self.sample: | |
std = torch.exp(0.5 * logvar) | |
return mean + std * torch.randn_like(mean) | |
else: | |
return mean | |
class AutoEncoder(nn.Module): | |
def __init__(self, params: AutoEncoderParams): | |
super().__init__() | |
self.encoder = Encoder( | |
resolution=params.resolution, | |
in_channels=params.in_channels, | |
ch=params.ch, | |
ch_mult=params.ch_mult, | |
num_res_blocks=params.num_res_blocks, | |
z_channels=params.z_channels, | |
) | |
self.decoder = Decoder( | |
resolution=params.resolution, | |
in_channels=params.in_channels, | |
ch=params.ch, | |
out_ch=params.out_ch, | |
ch_mult=params.ch_mult, | |
num_res_blocks=params.num_res_blocks, | |
z_channels=params.z_channels, | |
) | |
self.reg = DiagonalGaussian() | |
self.scale_factor = params.scale_factor | |
self.shift_factor = params.shift_factor | |
def encode(self, x: Tensor) -> Tensor: | |
z = self.reg(self.encoder(x)) | |
z = self.scale_factor * (z - self.shift_factor) | |
return z | |
def decode(self, z: Tensor) -> Tensor: | |
z = z / self.scale_factor + self.shift_factor | |
return self.decoder(z) | |
def forward(self, x: Tensor) -> Tensor: | |
return self.decode(self.encode(x)) |