Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Commit
•
23ebba4
1
Parent(s):
5148630
Create eva_vit_model.py
Browse files- eva_clip/eva_vit_model.py +630 -0
eva_clip/eva_vit_model.py
ADDED
@@ -0,0 +1,630 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Adapted from https://github.com/microsoft/unilm/tree/master/beit
|
3 |
+
# --------------------------------------------------------
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
from functools import partial
|
7 |
+
from itertools import repeat
|
8 |
+
import collections.abc
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import warnings
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from .transformer import PatchDropout
|
15 |
+
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
16 |
+
|
17 |
+
if os.getenv('ENV_TYPE') == 'deepspeed':
|
18 |
+
try:
|
19 |
+
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
20 |
+
except:
|
21 |
+
from torch.utils.checkpoint import checkpoint
|
22 |
+
else:
|
23 |
+
from torch.utils.checkpoint import checkpoint
|
24 |
+
|
25 |
+
try:
|
26 |
+
import xformers
|
27 |
+
import xformers.ops as xops
|
28 |
+
XFORMERS_IS_AVAILBLE = True
|
29 |
+
except:
|
30 |
+
XFORMERS_IS_AVAILBLE = False
|
31 |
+
|
32 |
+
|
33 |
+
def _ntuple(n):
|
34 |
+
def parse(x):
|
35 |
+
if isinstance(x, collections.abc.Iterable):
|
36 |
+
return x
|
37 |
+
return tuple(repeat(x, n))
|
38 |
+
return parse
|
39 |
+
|
40 |
+
to_2tuple = _ntuple(2)
|
41 |
+
|
42 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
43 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
44 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
45 |
+
def norm_cdf(x):
|
46 |
+
# Computes standard normal cumulative distribution function
|
47 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
48 |
+
|
49 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
50 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
51 |
+
"The distribution of values may be incorrect.",
|
52 |
+
stacklevel=2)
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
# Values are generated by using a truncated uniform distribution and
|
56 |
+
# then using the inverse CDF for the normal distribution.
|
57 |
+
# Get upper and lower cdf values
|
58 |
+
l = norm_cdf((a - mean) / std)
|
59 |
+
u = norm_cdf((b - mean) / std)
|
60 |
+
|
61 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
62 |
+
# [2l-1, 2u-1].
|
63 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
64 |
+
|
65 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
66 |
+
# standard normal
|
67 |
+
tensor.erfinv_()
|
68 |
+
|
69 |
+
# Transform to proper mean, std
|
70 |
+
tensor.mul_(std * math.sqrt(2.))
|
71 |
+
tensor.add_(mean)
|
72 |
+
|
73 |
+
# Clamp to ensure it's in the proper range
|
74 |
+
tensor.clamp_(min=a, max=b)
|
75 |
+
return tensor
|
76 |
+
|
77 |
+
|
78 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
79 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
80 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
81 |
+
normal distribution. The values are effectively drawn from the
|
82 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
83 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
84 |
+
the bounds. The method used for generating the random values works
|
85 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
86 |
+
Args:
|
87 |
+
tensor: an n-dimensional `torch.Tensor`
|
88 |
+
mean: the mean of the normal distribution
|
89 |
+
std: the standard deviation of the normal distribution
|
90 |
+
a: the minimum cutoff value
|
91 |
+
b: the maximum cutoff value
|
92 |
+
Examples:
|
93 |
+
>>> w = torch.empty(3, 5)
|
94 |
+
>>> nn.init.trunc_normal_(w)
|
95 |
+
"""
|
96 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
97 |
+
|
98 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
99 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
100 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
101 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
102 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
103 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
104 |
+
'survival rate' as the argument.
|
105 |
+
"""
|
106 |
+
if drop_prob == 0. or not training:
|
107 |
+
return x
|
108 |
+
keep_prob = 1 - drop_prob
|
109 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
110 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
111 |
+
if keep_prob > 0.0 and scale_by_keep:
|
112 |
+
random_tensor.div_(keep_prob)
|
113 |
+
return x * random_tensor
|
114 |
+
|
115 |
+
|
116 |
+
class DropPath(nn.Module):
|
117 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
118 |
+
"""
|
119 |
+
def __init__(self, drop_prob=None):
|
120 |
+
super(DropPath, self).__init__()
|
121 |
+
self.drop_prob = drop_prob
|
122 |
+
|
123 |
+
def forward(self, x):
|
124 |
+
return drop_path(x, self.drop_prob, self.training)
|
125 |
+
|
126 |
+
def extra_repr(self) -> str:
|
127 |
+
return 'p={}'.format(self.drop_prob)
|
128 |
+
|
129 |
+
|
130 |
+
class Mlp(nn.Module):
|
131 |
+
def __init__(
|
132 |
+
self,
|
133 |
+
in_features,
|
134 |
+
hidden_features=None,
|
135 |
+
out_features=None,
|
136 |
+
act_layer=nn.GELU,
|
137 |
+
norm_layer=nn.LayerNorm,
|
138 |
+
drop=0.,
|
139 |
+
subln=False,
|
140 |
+
):
|
141 |
+
super().__init__()
|
142 |
+
out_features = out_features or in_features
|
143 |
+
hidden_features = hidden_features or in_features
|
144 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
145 |
+
self.act = act_layer()
|
146 |
+
|
147 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
148 |
+
|
149 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
150 |
+
self.drop = nn.Dropout(drop)
|
151 |
+
|
152 |
+
def forward(self, x):
|
153 |
+
x = self.fc1(x)
|
154 |
+
x = self.act(x)
|
155 |
+
# x = self.drop(x)
|
156 |
+
# commit this for the orignal BERT implement
|
157 |
+
x = self.ffn_ln(x)
|
158 |
+
|
159 |
+
x = self.fc2(x)
|
160 |
+
x = self.drop(x)
|
161 |
+
return x
|
162 |
+
|
163 |
+
class SwiGLU(nn.Module):
|
164 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
|
165 |
+
norm_layer=nn.LayerNorm, subln=False):
|
166 |
+
super().__init__()
|
167 |
+
out_features = out_features or in_features
|
168 |
+
hidden_features = hidden_features or in_features
|
169 |
+
|
170 |
+
self.w1 = nn.Linear(in_features, hidden_features)
|
171 |
+
self.w2 = nn.Linear(in_features, hidden_features)
|
172 |
+
|
173 |
+
self.act = act_layer()
|
174 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
175 |
+
self.w3 = nn.Linear(hidden_features, out_features)
|
176 |
+
|
177 |
+
self.drop = nn.Dropout(drop)
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
x1 = self.w1(x)
|
181 |
+
x2 = self.w2(x)
|
182 |
+
hidden = self.act(x1) * x2
|
183 |
+
x = self.ffn_ln(hidden)
|
184 |
+
x = self.w3(x)
|
185 |
+
x = self.drop(x)
|
186 |
+
return x
|
187 |
+
|
188 |
+
class Attention(nn.Module):
|
189 |
+
def __init__(
|
190 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
191 |
+
proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm):
|
192 |
+
super().__init__()
|
193 |
+
self.num_heads = num_heads
|
194 |
+
head_dim = dim // num_heads
|
195 |
+
if attn_head_dim is not None:
|
196 |
+
head_dim = attn_head_dim
|
197 |
+
all_head_dim = head_dim * self.num_heads
|
198 |
+
self.scale = qk_scale or head_dim ** -0.5
|
199 |
+
|
200 |
+
self.subln = subln
|
201 |
+
if self.subln:
|
202 |
+
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
|
203 |
+
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
|
204 |
+
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
|
205 |
+
else:
|
206 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
207 |
+
|
208 |
+
if qkv_bias:
|
209 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
210 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
211 |
+
else:
|
212 |
+
self.q_bias = None
|
213 |
+
self.v_bias = None
|
214 |
+
|
215 |
+
if window_size:
|
216 |
+
self.window_size = window_size
|
217 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
218 |
+
self.relative_position_bias_table = nn.Parameter(
|
219 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
220 |
+
# cls to token & token 2 cls & cls to cls
|
221 |
+
|
222 |
+
# get pair-wise relative position index for each token inside the window
|
223 |
+
coords_h = torch.arange(window_size[0])
|
224 |
+
coords_w = torch.arange(window_size[1])
|
225 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
226 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
227 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
228 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
229 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
230 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
231 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
232 |
+
relative_position_index = \
|
233 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
234 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
235 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
236 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
237 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
238 |
+
|
239 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
240 |
+
else:
|
241 |
+
self.window_size = None
|
242 |
+
self.relative_position_bias_table = None
|
243 |
+
self.relative_position_index = None
|
244 |
+
|
245 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
246 |
+
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
|
247 |
+
# self.proj = nn.Linear(all_head_dim, all_head_dim)
|
248 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
249 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
250 |
+
self.xattn = xattn
|
251 |
+
self.xattn_drop = attn_drop
|
252 |
+
|
253 |
+
self.rope = rope
|
254 |
+
|
255 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
256 |
+
B, N, C = x.shape
|
257 |
+
if self.subln:
|
258 |
+
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
|
259 |
+
k = F.linear(input=x, weight=self.k_proj.weight, bias=None)
|
260 |
+
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
|
261 |
+
|
262 |
+
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C
|
263 |
+
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
264 |
+
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3)
|
265 |
+
else:
|
266 |
+
|
267 |
+
qkv_bias = None
|
268 |
+
if self.q_bias is not None:
|
269 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
270 |
+
|
271 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
272 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C
|
273 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
274 |
+
|
275 |
+
if self.rope:
|
276 |
+
# slightly fast impl
|
277 |
+
q_t = q[:, :, 1:, :]
|
278 |
+
ro_q_t = self.rope(q_t)
|
279 |
+
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
|
280 |
+
|
281 |
+
k_t = k[:, :, 1:, :]
|
282 |
+
ro_k_t = self.rope(k_t)
|
283 |
+
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
|
284 |
+
|
285 |
+
if self.xattn:
|
286 |
+
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
|
287 |
+
k = k.permute(0, 2, 1, 3)
|
288 |
+
v = v.permute(0, 2, 1, 3)
|
289 |
+
|
290 |
+
x = xops.memory_efficient_attention(
|
291 |
+
q, k, v,
|
292 |
+
p=self.xattn_drop,
|
293 |
+
scale=self.scale,
|
294 |
+
)
|
295 |
+
x = x.reshape(B, N, -1)
|
296 |
+
x = self.inner_attn_ln(x)
|
297 |
+
x = self.proj(x)
|
298 |
+
x = self.proj_drop(x)
|
299 |
+
else:
|
300 |
+
q = q * self.scale
|
301 |
+
attn = (q @ k.transpose(-2, -1))
|
302 |
+
|
303 |
+
if self.relative_position_bias_table is not None:
|
304 |
+
relative_position_bias = \
|
305 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
306 |
+
self.window_size[0] * self.window_size[1] + 1,
|
307 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
308 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
309 |
+
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
|
310 |
+
|
311 |
+
if rel_pos_bias is not None:
|
312 |
+
attn = attn + rel_pos_bias.type_as(attn)
|
313 |
+
|
314 |
+
if attn_mask is not None:
|
315 |
+
attn_mask = attn_mask.bool()
|
316 |
+
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf"))
|
317 |
+
|
318 |
+
attn = attn.softmax(dim=-1)
|
319 |
+
attn = self.attn_drop(attn)
|
320 |
+
|
321 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
322 |
+
x = self.inner_attn_ln(x)
|
323 |
+
x = self.proj(x)
|
324 |
+
x = self.proj_drop(x)
|
325 |
+
return x
|
326 |
+
|
327 |
+
|
328 |
+
class Block(nn.Module):
|
329 |
+
|
330 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
331 |
+
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
332 |
+
window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False,
|
333 |
+
subln=False, naiveswiglu=False):
|
334 |
+
super().__init__()
|
335 |
+
self.norm1 = norm_layer(dim)
|
336 |
+
self.attn = Attention(
|
337 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
338 |
+
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim,
|
339 |
+
xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer)
|
340 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
341 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
342 |
+
self.norm2 = norm_layer(dim)
|
343 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
344 |
+
|
345 |
+
if naiveswiglu:
|
346 |
+
self.mlp = SwiGLU(
|
347 |
+
in_features=dim,
|
348 |
+
hidden_features=mlp_hidden_dim,
|
349 |
+
subln=subln,
|
350 |
+
norm_layer=norm_layer,
|
351 |
+
)
|
352 |
+
else:
|
353 |
+
self.mlp = Mlp(
|
354 |
+
in_features=dim,
|
355 |
+
hidden_features=mlp_hidden_dim,
|
356 |
+
act_layer=act_layer,
|
357 |
+
subln=subln,
|
358 |
+
drop=drop
|
359 |
+
)
|
360 |
+
|
361 |
+
if init_values is not None and init_values > 0:
|
362 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
363 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
364 |
+
else:
|
365 |
+
self.gamma_1, self.gamma_2 = None, None
|
366 |
+
|
367 |
+
self.postnorm = postnorm
|
368 |
+
|
369 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
370 |
+
if self.gamma_1 is None:
|
371 |
+
if self.postnorm:
|
372 |
+
x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
373 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
374 |
+
else:
|
375 |
+
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
376 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
377 |
+
else:
|
378 |
+
if self.postnorm:
|
379 |
+
x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)))
|
380 |
+
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
|
381 |
+
else:
|
382 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))
|
383 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
384 |
+
return x
|
385 |
+
|
386 |
+
|
387 |
+
class PatchEmbed(nn.Module):
|
388 |
+
""" Image to Patch Embedding
|
389 |
+
"""
|
390 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
391 |
+
super().__init__()
|
392 |
+
img_size = to_2tuple(img_size)
|
393 |
+
patch_size = to_2tuple(patch_size)
|
394 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
395 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
396 |
+
self.img_size = img_size
|
397 |
+
self.patch_size = patch_size
|
398 |
+
self.num_patches = num_patches
|
399 |
+
|
400 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
401 |
+
|
402 |
+
def forward(self, x, **kwargs):
|
403 |
+
B, C, H, W = x.shape
|
404 |
+
# FIXME look at relaxing size constraints
|
405 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
406 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
407 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
408 |
+
return x
|
409 |
+
|
410 |
+
|
411 |
+
class RelativePositionBias(nn.Module):
|
412 |
+
|
413 |
+
def __init__(self, window_size, num_heads):
|
414 |
+
super().__init__()
|
415 |
+
self.window_size = window_size
|
416 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
417 |
+
self.relative_position_bias_table = nn.Parameter(
|
418 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
419 |
+
# cls to token & token 2 cls & cls to cls
|
420 |
+
|
421 |
+
# get pair-wise relative position index for each token inside the window
|
422 |
+
coords_h = torch.arange(window_size[0])
|
423 |
+
coords_w = torch.arange(window_size[1])
|
424 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
425 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
426 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
427 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
428 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
429 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
430 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
431 |
+
relative_position_index = \
|
432 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
433 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
434 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
435 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
436 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
437 |
+
|
438 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
439 |
+
|
440 |
+
def forward(self):
|
441 |
+
relative_position_bias = \
|
442 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
443 |
+
self.window_size[0] * self.window_size[1] + 1,
|
444 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
445 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
446 |
+
|
447 |
+
|
448 |
+
class EVAVisionTransformer(nn.Module):
|
449 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
450 |
+
"""
|
451 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
452 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
453 |
+
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0.,
|
454 |
+
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False,
|
455 |
+
use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False,
|
456 |
+
pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False):
|
457 |
+
super().__init__()
|
458 |
+
|
459 |
+
if not XFORMERS_IS_AVAILBLE:
|
460 |
+
xattn = False
|
461 |
+
|
462 |
+
self.image_size = img_size
|
463 |
+
self.num_classes = num_classes
|
464 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
465 |
+
|
466 |
+
self.patch_embed = PatchEmbed(
|
467 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
468 |
+
num_patches = self.patch_embed.num_patches
|
469 |
+
|
470 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
471 |
+
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
472 |
+
if use_abs_pos_emb:
|
473 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
474 |
+
else:
|
475 |
+
self.pos_embed = None
|
476 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
477 |
+
|
478 |
+
if use_shared_rel_pos_bias:
|
479 |
+
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
480 |
+
else:
|
481 |
+
self.rel_pos_bias = None
|
482 |
+
|
483 |
+
if rope:
|
484 |
+
half_head_dim = embed_dim // num_heads // 2
|
485 |
+
hw_seq_len = img_size // patch_size
|
486 |
+
self.rope = VisionRotaryEmbeddingFast(
|
487 |
+
dim=half_head_dim,
|
488 |
+
pt_seq_len=pt_hw_seq_len,
|
489 |
+
ft_seq_len=hw_seq_len if intp_freq else None,
|
490 |
+
# patch_dropout=patch_dropout
|
491 |
+
)
|
492 |
+
else:
|
493 |
+
self.rope = None
|
494 |
+
|
495 |
+
self.naiveswiglu = naiveswiglu
|
496 |
+
|
497 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
498 |
+
self.use_rel_pos_bias = use_rel_pos_bias
|
499 |
+
self.blocks = nn.ModuleList([
|
500 |
+
Block(
|
501 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
502 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
503 |
+
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
|
504 |
+
xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu)
|
505 |
+
for i in range(depth)])
|
506 |
+
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
507 |
+
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
508 |
+
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
509 |
+
|
510 |
+
if self.pos_embed is not None:
|
511 |
+
trunc_normal_(self.pos_embed, std=.02)
|
512 |
+
|
513 |
+
trunc_normal_(self.cls_token, std=.02)
|
514 |
+
# trunc_normal_(self.mask_token, std=.02)
|
515 |
+
|
516 |
+
self.apply(self._init_weights)
|
517 |
+
self.fix_init_weight()
|
518 |
+
|
519 |
+
if isinstance(self.head, nn.Linear):
|
520 |
+
trunc_normal_(self.head.weight, std=.02)
|
521 |
+
self.head.weight.data.mul_(init_scale)
|
522 |
+
self.head.bias.data.mul_(init_scale)
|
523 |
+
|
524 |
+
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
|
525 |
+
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
|
526 |
+
|
527 |
+
self.grad_checkpointing = grad_checkpointing
|
528 |
+
|
529 |
+
def fix_init_weight(self):
|
530 |
+
def rescale(param, layer_id):
|
531 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
532 |
+
|
533 |
+
for layer_id, layer in enumerate(self.blocks):
|
534 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
535 |
+
if self.naiveswiglu:
|
536 |
+
rescale(layer.mlp.w3.weight.data, layer_id + 1)
|
537 |
+
else:
|
538 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
539 |
+
|
540 |
+
def get_cast_dtype(self) -> torch.dtype:
|
541 |
+
return self.blocks[0].mlp.fc2.weight.dtype
|
542 |
+
|
543 |
+
def _init_weights(self, m):
|
544 |
+
if isinstance(m, nn.Linear):
|
545 |
+
trunc_normal_(m.weight, std=.02)
|
546 |
+
if m.bias is not None:
|
547 |
+
nn.init.constant_(m.bias, 0)
|
548 |
+
elif isinstance(m, nn.LayerNorm):
|
549 |
+
nn.init.constant_(m.bias, 0)
|
550 |
+
nn.init.constant_(m.weight, 1.0)
|
551 |
+
|
552 |
+
def get_num_layers(self):
|
553 |
+
return len(self.blocks)
|
554 |
+
|
555 |
+
def lock(self, unlocked_groups=0, freeze_bn_stats=False):
|
556 |
+
assert unlocked_groups == 0, 'partial locking not currently supported for this model'
|
557 |
+
for param in self.parameters():
|
558 |
+
param.requires_grad = False
|
559 |
+
|
560 |
+
@torch.jit.ignore
|
561 |
+
def set_grad_checkpointing(self, enable=True):
|
562 |
+
self.grad_checkpointing = enable
|
563 |
+
|
564 |
+
@torch.jit.ignore
|
565 |
+
def no_weight_decay(self):
|
566 |
+
return {'pos_embed', 'cls_token'}
|
567 |
+
|
568 |
+
def get_classifier(self):
|
569 |
+
return self.head
|
570 |
+
|
571 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
572 |
+
self.num_classes = num_classes
|
573 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
574 |
+
|
575 |
+
def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False):
|
576 |
+
|
577 |
+
x = self.patch_embed(x)
|
578 |
+
batch_size, seq_len, _ = x.size()
|
579 |
+
|
580 |
+
if shuffle:
|
581 |
+
idx = torch.randperm(x.shape[1]) + 1
|
582 |
+
zero = torch.LongTensor([0, ])
|
583 |
+
idx = torch.cat([zero, idx])
|
584 |
+
pos_embed = self.pos_embed[:, idx]
|
585 |
+
|
586 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
587 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
588 |
+
if shuffle:
|
589 |
+
x = x + pos_embed
|
590 |
+
elif self.pos_embed is not None:
|
591 |
+
x = x + self.pos_embed
|
592 |
+
x = self.pos_drop(x)
|
593 |
+
|
594 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
595 |
+
if os.getenv('RoPE') == '1':
|
596 |
+
if self.training and not isinstance(self.patch_dropout, nn.Identity):
|
597 |
+
x, patch_indices_keep = self.patch_dropout(x)
|
598 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep)
|
599 |
+
else:
|
600 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
|
601 |
+
x = self.patch_dropout(x)
|
602 |
+
else:
|
603 |
+
x = self.patch_dropout(x)
|
604 |
+
|
605 |
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
606 |
+
hidden_states = []
|
607 |
+
for idx, blk in enumerate(self.blocks):
|
608 |
+
if (0 < idx <= 20) and (idx % 4 == 0) and return_hidden:
|
609 |
+
hidden_states.append(x)
|
610 |
+
if self.grad_checkpointing:
|
611 |
+
x = checkpoint(blk, x, (rel_pos_bias,))
|
612 |
+
else:
|
613 |
+
x = blk(x, rel_pos_bias=rel_pos_bias)
|
614 |
+
|
615 |
+
if not return_all_features:
|
616 |
+
x = self.norm(x)
|
617 |
+
if self.fc_norm is not None:
|
618 |
+
return self.fc_norm(x.mean(1)), hidden_states
|
619 |
+
else:
|
620 |
+
return x[:, 0], hidden_states
|
621 |
+
return x
|
622 |
+
|
623 |
+
def forward(self, x, return_all_features=False, return_hidden=False, shuffle=False):
|
624 |
+
if return_all_features:
|
625 |
+
return self.forward_features(x, return_all_features, return_hidden, shuffle)
|
626 |
+
x, hidden_states = self.forward_features(x, return_all_features, return_hidden, shuffle)
|
627 |
+
x = self.head(x)
|
628 |
+
if return_hidden:
|
629 |
+
return x, hidden_states
|
630 |
+
return x
|