SunderAli17 commited on
Commit
2a12457
1 Parent(s): 63e6e79

Delete ToonMage

Browse files
Files changed (3) hide show
  1. ToonMage/fluxpipeline.py +0 -188
  2. ToonMage/pipeline.py +0 -232
  3. ToonMage/utils.py +0 -76
ToonMage/fluxpipeline.py DELETED
@@ -1,188 +0,0 @@
1
- import gc
2
-
3
- import cv2
4
- import insightface
5
- import torch
6
- import torch.nn as nn
7
- from basicsr.utils import img2tensor, tensor2img
8
- from facexlib.parsing import init_parsing_model
9
- from facexlib.utils.face_restoration_helper import FaceRestoreHelper
10
- from huggingface_hub import hf_hub_download, snapshot_download
11
- from insightface.app import FaceAnalysis
12
- from safetensors.torch import load_file
13
- from torchvision.transforms import InterpolationMode
14
- from torchvision.transforms.functional import normalize, resize
15
-
16
- from eva_clip import create_model_and_transforms
17
- from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
18
- from toonmage.encoders_flux import IDFormer, PerceiverAttentionCA
19
-
20
-
21
- class ToonMagePipeline(nn.Module):
22
- def __init__(self, dit, device, weight_dtype=torch.bfloat16, *args, **kwargs):
23
- super().__init__()
24
- self.device = device
25
- self.weight_dtype = weight_dtype
26
- double_interval = 2
27
- single_interval = 4
28
-
29
- # init encoder
30
- self.toonmage_encoder = IDFormer().to(self.device, self.weight_dtype)
31
-
32
- num_ca = 19 // double_interval + 38 // single_interval
33
- if 19 % double_interval != 0:
34
- num_ca += 1
35
- if 38 % single_interval != 0:
36
- num_ca += 1
37
- self.toonmage_ca = nn.ModuleList([
38
- PerceiverAttentionCA().to(self.device, self.weight_dtype) for _ in range(num_ca)
39
- ])
40
-
41
- dit.toonmage_ca = self.toonmage_ca
42
- dit.toonmage_double_interval = double_interval
43
- dit.toonmage_single_interval = single_interval
44
-
45
- # preprocessors
46
- # face align and parsing
47
- self.face_helper = FaceRestoreHelper(
48
- upscale_factor=1,
49
- face_size=512,
50
- crop_ratio=(1, 1),
51
- det_model='retinaface_resnet50',
52
- save_ext='png',
53
- device=self.device,
54
- )
55
- self.face_helper.face_parse = None
56
- self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device)
57
- # clip-vit backbone
58
- model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
59
- model = model.visual
60
- self.clip_vision_model = model.to(self.device, dtype=self.weight_dtype)
61
- eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN)
62
- eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD)
63
- if not isinstance(eva_transform_mean, (list, tuple)):
64
- eva_transform_mean = (eva_transform_mean,) * 3
65
- if not isinstance(eva_transform_std, (list, tuple)):
66
- eva_transform_std = (eva_transform_std,) * 3
67
- self.eva_transform_mean = eva_transform_mean
68
- self.eva_transform_std = eva_transform_std
69
- # antelopev2
70
- snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2')
71
- self.app = FaceAnalysis(
72
- name='antelopev2', root='.', providers=['CPUExecutionProvider']
73
- )
74
- self.app.prepare(ctx_id=0, det_size=(640, 640))
75
- self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx', providers=['CPUExecutionProvider'])
76
- self.handler_ante.prepare(ctx_id=0)
77
-
78
- gc.collect()
79
- torch.cuda.empty_cache()
80
-
81
- # self.load_pretrain()
82
-
83
- # other configs
84
- self.debug_img_list = []
85
-
86
- def load_pretrain(self, pretrain_path=None):
87
- hf_hub_download('SunderAli17/SAK', 'toonmage_flux_v2.safetensors', local_dir='models')
88
- ckpt_path = 'models/toonmage_flux_v2.safetensors'
89
- if pretrain_path is not None:
90
- ckpt_path = pretrain_path
91
- state_dict = load_file(ckpt_path)
92
- state_dict_dict = {}
93
- for k, v in state_dict.items():
94
- module = k.split('.')[0]
95
- state_dict_dict.setdefault(module, {})
96
- new_k = k[len(module) + 1:]
97
- state_dict_dict[module][new_k] = v
98
-
99
- for module in state_dict_dict:
100
- print(f'loading from {module}')
101
- getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)
102
-
103
- del state_dict
104
- del state_dict_dict
105
-
106
- def to_gray(self, img):
107
- x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
108
- x = x.repeat(1, 3, 1, 1)
109
- return x
110
-
111
- def get_id_embedding(self, image, cal_uncond=False):
112
- """
113
- Args:
114
- image: numpy rgb image, range [0, 255]
115
- """
116
- self.face_helper.clean_all()
117
- self.debug_img_list = []
118
- image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
119
- # get antelopev2 embedding
120
- # for k in self.app.models.keys():
121
- # self.app.models[k].session.set_providers(['CUDAExecutionProvider'])
122
- face_info = self.app.get(image_bgr)
123
- if len(face_info) > 0:
124
- face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[
125
- -1
126
- ] # only use the maximum face
127
- id_ante_embedding = face_info['embedding']
128
- self.debug_img_list.append(
129
- image[
130
- int(face_info['bbox'][1]) : int(face_info['bbox'][3]),
131
- int(face_info['bbox'][0]) : int(face_info['bbox'][2]),
132
- ]
133
- )
134
- else:
135
- id_ante_embedding = None
136
-
137
- # using facexlib to detect and align face
138
- self.face_helper.read_image(image_bgr)
139
- self.face_helper.get_face_landmarks_5(only_center_face=True)
140
- self.face_helper.align_warp_face()
141
- if len(self.face_helper.cropped_faces) == 0:
142
- raise RuntimeError('facexlib align face fail')
143
- align_face = self.face_helper.cropped_faces[0]
144
- # incase insightface didn't detect face
145
- if id_ante_embedding is None:
146
- print('fail to detect face using insightface, extract embedding on align face')
147
- # self.handler_ante.session.set_providers(['CUDAExecutionProvider'])
148
- id_ante_embedding = self.handler_ante.get_feat(align_face)
149
-
150
- id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device, self.weight_dtype)
151
- if id_ante_embedding.ndim == 1:
152
- id_ante_embedding = id_ante_embedding.unsqueeze(0)
153
-
154
- # parsing
155
- input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
156
- input = input.to(self.device)
157
- parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
158
- parsing_out = parsing_out.argmax(dim=1, keepdim=True)
159
- bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
160
- bg = sum(parsing_out == i for i in bg_label).bool()
161
- white_image = torch.ones_like(input)
162
- # only keep the face features
163
- face_features_image = torch.where(bg, white_image, self.to_gray(input))
164
- self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False))
165
-
166
- # transform img before sending to eva-clip-vit
167
- face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC)
168
- face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std)
169
- id_cond_vit, id_vit_hidden = self.clip_vision_model(
170
- face_features_image.to(self.weight_dtype), return_all_features=False, return_hidden=True, shuffle=False
171
- )
172
- id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
173
- id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)
174
-
175
- id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1)
176
-
177
- id_embedding = self.toonmage_encoder(id_cond, id_vit_hidden)
178
-
179
- if not cal_uncond:
180
- return id_embedding, None
181
-
182
- id_uncond = torch.zeros_like(id_cond)
183
- id_vit_hidden_uncond = []
184
- for layer_idx in range(0, len(id_vit_hidden)):
185
- id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx]))
186
- uncond_id_embedding = self.toonmage_encoder(id_uncond, id_vit_hidden_uncond)
187
-
188
- return id_embedding, uncond_id_embedding
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ToonMage/pipeline.py DELETED
@@ -1,232 +0,0 @@
1
- import gc
2
-
3
- import cv2
4
- import insightface
5
- import torch
6
- import torch.nn as nn
7
- from basicsr.utils import img2tensor, tensor2img
8
- from diffusers import (
9
- DPMSolverMultistepScheduler,
10
- StableDiffusionXLPipeline,
11
- UNet2DConditionModel,
12
- )
13
- from facexlib.parsing import init_parsing_model
14
- from facexlib.utils.face_restoration_helper import FaceRestoreHelper
15
- from huggingface_hub import hf_hub_download, snapshot_download
16
- from insightface.app import FaceAnalysis
17
- from safetensors.torch import load_file
18
- from torchvision.transforms import InterpolationMode
19
- from torchvision.transforms.functional import normalize, resize
20
-
21
- from eva_clip import create_model_and_transforms
22
- from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD
23
- from toonmage.encoders import IDEncoder
24
- from toonmage.utils import is_torch2_available
25
-
26
- if is_torch2_available():
27
- from toonmage.attention_processor import AttnProcessor2_0 as AttnProcessor
28
- from toonmage.attention_processor import IDAttnProcessor2_0 as IDAttnProcessor
29
- else:
30
- from toonmage.attention_processor import AttnProcessor, IDAttnProcessor
31
-
32
-
33
- class ToonMagePipeline:
34
- def __init__(self, *args, **kwargs):
35
- super().__init__()
36
- self.device = 'cuda'
37
- sdxl_base_repo = 'stabilityai/stable-diffusion-xl-base-1.0'
38
- sdxl_lightning_repo = 'ByteDance/SDXL-Lightning'
39
- self.sdxl_base_repo = sdxl_base_repo
40
-
41
- # load base model
42
- unet = UNet2DConditionModel.from_config(sdxl_base_repo, subfolder='unet').to(self.device, torch.float16)
43
- unet.load_state_dict(
44
- load_file(
45
- hf_hub_download(sdxl_lightning_repo, 'sdxl_lightning_4step_unet.safetensors'), device=self.device
46
- )
47
- )
48
- unet.half()
49
- self.hack_unet_attn_layers(unet)
50
- self.pipe = StableDiffusionXLPipeline.from_pretrained(
51
- sdxl_base_repo, unet=unet, torch_dtype=torch.float16, variant="fp16"
52
- ).to(self.device)
53
- self.pipe.watermark = None
54
-
55
- # scheduler
56
- self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
57
- self.pipe.scheduler.config, timestep_spacing="trailing"
58
- )
59
-
60
- # ID adapters
61
- self.id_adapter = IDEncoder().to(self.device)
62
-
63
- # preprocessors
64
- # face align and parsing
65
- self.face_helper = FaceRestoreHelper(
66
- upscale_factor=1,
67
- face_size=512,
68
- crop_ratio=(1, 1),
69
- det_model='retinaface_resnet50',
70
- save_ext='png',
71
- device=self.device,
72
- )
73
- self.face_helper.face_parse = None
74
- self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device)
75
- # clip-vit backbone
76
- model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True)
77
- model = model.visual
78
- self.clip_vision_model = model.to(self.device)
79
- eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN)
80
- eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD)
81
- if not isinstance(eva_transform_mean, (list, tuple)):
82
- eva_transform_mean = (eva_transform_mean,) * 3
83
- if not isinstance(eva_transform_std, (list, tuple)):
84
- eva_transform_std = (eva_transform_std,) * 3
85
- self.eva_transform_mean = eva_transform_mean
86
- self.eva_transform_std = eva_transform_std
87
- # antelopev2
88
- snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2')
89
- self.app = FaceAnalysis(
90
- name='antelopev2', root='.', providers=['CPUExecutionProvider']
91
- )
92
- self.app.prepare(ctx_id=0, det_size=(640, 640))
93
- self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx', providers=['CPUExecutionProvider'])
94
- self.handler_ante.prepare(ctx_id=0)
95
-
96
- print('load done')
97
-
98
- gc.collect()
99
- torch.cuda.empty_cache()
100
-
101
- self.load_pretrain()
102
-
103
- # other configs
104
- self.debug_img_list = []
105
-
106
- def hack_unet_attn_layers(self, unet):
107
- id_adapter_attn_procs = {}
108
- for name, _ in unet.attn_processors.items():
109
- cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
110
- if name.startswith("mid_block"):
111
- hidden_size = unet.config.block_out_channels[-1]
112
- elif name.startswith("up_blocks"):
113
- block_id = int(name[len("up_blocks.")])
114
- hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
115
- elif name.startswith("down_blocks"):
116
- block_id = int(name[len("down_blocks.")])
117
- hidden_size = unet.config.block_out_channels[block_id]
118
- if cross_attention_dim is not None:
119
- id_adapter_attn_procs[name] = IDAttnProcessor(
120
- hidden_size=hidden_size,
121
- cross_attention_dim=cross_attention_dim,
122
- ).to(unet.device)
123
- else:
124
- id_adapter_attn_procs[name] = AttnProcessor()
125
- unet.set_attn_processor(id_adapter_attn_procs)
126
- self.id_adapter_attn_layers = nn.ModuleList(unet.attn_processors.values())
127
-
128
- def load_pretrain(self):
129
- hf_hub_download('SunderAli17/SAK', 'toonmage_v2.bin', local_dir='models')
130
- ckpt_path = 'models/toonmage_v2.bin'
131
- state_dict = torch.load(ckpt_path, map_location='cpu')
132
- state_dict_dict = {}
133
- for k, v in state_dict.items():
134
- module = k.split('.')[0]
135
- state_dict_dict.setdefault(module, {})
136
- new_k = k[len(module) + 1 :]
137
- state_dict_dict[module][new_k] = v
138
-
139
- for module in state_dict_dict:
140
- print(f'loading from {module}')
141
- getattr(self, module).load_state_dict(state_dict_dict[module], strict=True)
142
-
143
- def to_gray(self, img):
144
- x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3]
145
- x = x.repeat(1, 3, 1, 1)
146
- return x
147
-
148
- def get_id_embedding(self, image):
149
- """
150
- Args:
151
- image: numpy rgb image, range [0, 255]
152
- """
153
- self.face_helper.clean_all()
154
- image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
155
- # get antelopev2 embedding
156
- face_info = self.app.get(image_bgr)
157
- if len(face_info) > 0:
158
- face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * x['bbox'][3] - x['bbox'][1])[
159
- -1
160
- ] # only use the maximum face
161
- id_ante_embedding = face_info['embedding']
162
- self.debug_img_list.append(
163
- image[
164
- int(face_info['bbox'][1]) : int(face_info['bbox'][3]),
165
- int(face_info['bbox'][0]) : int(face_info['bbox'][2]),
166
- ]
167
- )
168
- else:
169
- id_ante_embedding = None
170
-
171
- # using facexlib to detect and align face
172
- self.face_helper.read_image(image_bgr)
173
- self.face_helper.get_face_landmarks_5(only_center_face=True)
174
- self.face_helper.align_warp_face()
175
- if len(self.face_helper.cropped_faces) == 0:
176
- raise RuntimeError('facexlib align face fail')
177
- align_face = self.face_helper.cropped_faces[0]
178
- # incase insightface didn't detect face
179
- if id_ante_embedding is None:
180
- print('fail to detect face using insightface, extract embedding on align face')
181
- id_ante_embedding = self.handler_ante.get_feat(align_face)
182
-
183
- id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device)
184
- if id_ante_embedding.ndim == 1:
185
- id_ante_embedding = id_ante_embedding.unsqueeze(0)
186
-
187
- # parsing
188
- input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
189
- input = input.to(self.device)
190
- parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
191
- parsing_out = parsing_out.argmax(dim=1, keepdim=True)
192
- bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
193
- bg = sum(parsing_out == i for i in bg_label).bool()
194
- white_image = torch.ones_like(input)
195
- # only keep the face features
196
- face_features_image = torch.where(bg, white_image, self.to_gray(input))
197
- self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False))
198
-
199
- # transform img before sending to eva-clip-vit
200
- face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC)
201
- face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std)
202
- id_cond_vit, id_vit_hidden = self.clip_vision_model(
203
- face_features_image, return_all_features=False, return_hidden=True, shuffle=False
204
- )
205
- id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True)
206
- id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm)
207
-
208
- id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1)
209
- id_uncond = torch.zeros_like(id_cond)
210
- id_vit_hidden_uncond = []
211
- for layer_idx in range(0, len(id_vit_hidden)):
212
- id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx]))
213
-
214
- id_embedding = self.id_adapter(id_cond, id_vit_hidden)
215
- uncond_id_embedding = self.id_adapter(id_uncond, id_vit_hidden_uncond)
216
-
217
- # return id_embedding
218
- return torch.cat((uncond_id_embedding, id_embedding), dim=0)
219
-
220
- def inference(self, prompt, size, prompt_n='', image_embedding=None, id_scale=1.0, guidance_scale=1.2, steps=4):
221
- images = self.pipe(
222
- prompt=prompt,
223
- negative_prompt=prompt_n,
224
- num_images_per_prompt=size[0],
225
- height=size[1],
226
- width=size[2],
227
- num_inference_steps=steps,
228
- guidance_scale=guidance_scale,
229
- cross_attention_kwargs={'id_embedding': image_embedding, 'id_scale': id_scale},
230
- ).images
231
-
232
- return images
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ToonMage/utils.py DELETED
@@ -1,76 +0,0 @@
1
- import importlib
2
- import os
3
- import random
4
-
5
- import cv2
6
- import numpy as np
7
- import torch
8
- import torch.nn.functional as F
9
- from transformers import PretrainedConfig
10
-
11
-
12
- def seed_everything(seed):
13
- os.environ["PL_GLOBAL_SEED"] = str(seed)
14
- random.seed(seed)
15
- np.random.seed(seed)
16
- torch.manual_seed(seed)
17
- torch.cuda.manual_seed_all(seed)
18
-
19
-
20
- def is_torch2_available():
21
- return hasattr(F, "scaled_dot_product_attention")
22
-
23
-
24
- def instantiate_from_config(config):
25
- if "target" not in config:
26
- if config == '__is_first_stage__' or config == "__is_unconditional__":
27
- return None
28
- raise KeyError("Expected key `target` to instantiate.")
29
- return get_obj_from_str(config["target"])(**config.get("params", {}))
30
-
31
-
32
- def get_obj_from_str(string, reload=False):
33
- module, cls = string.rsplit(".", 1)
34
- if reload:
35
- module_imp = importlib.import_module(module)
36
- importlib.reload(module_imp)
37
- return getattr(importlib.import_module(module, package=None), cls)
38
-
39
-
40
- def drop_seq_token(seq, drop_rate=0.5):
41
- idx = torch.randperm(seq.size(1))
42
- num_keep_tokens = int(len(idx) * (1 - drop_rate))
43
- idx = idx[:num_keep_tokens]
44
- seq = seq[:, idx]
45
- return seq
46
-
47
-
48
- def import_model_class_from_model_name_or_path(
49
- pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
50
- ):
51
- text_encoder_config = PretrainedConfig.from_pretrained(
52
- pretrained_model_name_or_path, subfolder=subfolder, revision=revision
53
- )
54
- model_class = text_encoder_config.architectures[0]
55
-
56
- if model_class == "CLIPTextModel":
57
- from transformers import CLIPTextModel
58
-
59
- return CLIPTextModel
60
- elif model_class == "CLIPTextModelWithProjection": # noqa RET505
61
- from transformers import CLIPTextModelWithProjection
62
-
63
- return CLIPTextModelWithProjection
64
- else:
65
- raise ValueError(f"{model_class} is not supported.")
66
-
67
-
68
- def resize_numpy_image_long(image, resize_long_edge=768):
69
- h, w = image.shape[:2]
70
- if max(h, w) <= resize_long_edge:
71
- return image
72
- k = resize_long_edge / max(h, w)
73
- h = int(h * k)
74
- w = int(w * k)
75
- image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
76
- return image