Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Commit
•
9b06330
1
Parent(s):
5ac1546
Create cli.py
Browse files- flux/cli.py +259 -0
flux/cli.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import time
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from glob import iglob
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from einops import rearrange
|
9 |
+
from fire import Fire
|
10 |
+
from PIL import ExifTags, Image
|
11 |
+
from transformers import pipeline
|
12 |
+
|
13 |
+
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
|
14 |
+
from flux.util import (
|
15 |
+
configs,
|
16 |
+
load_ae,
|
17 |
+
load_clip,
|
18 |
+
load_flow_model,
|
19 |
+
load_t5,
|
20 |
+
)
|
21 |
+
|
22 |
+
NSFW_THRESHOLD = 0.85
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class SamplingOptions:
|
27 |
+
prompt: str
|
28 |
+
width: int
|
29 |
+
height: int
|
30 |
+
num_steps: int
|
31 |
+
guidance: float
|
32 |
+
seed: int
|
33 |
+
|
34 |
+
|
35 |
+
def parse_prompt(options: SamplingOptions) -> SamplingOptions:
|
36 |
+
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
|
37 |
+
usage = (
|
38 |
+
"Usage: Either write your prompt directly, leave this field empty "
|
39 |
+
"to repeat the prompt or write a command starting with a slash:\n"
|
40 |
+
"- '/w <width>' will set the width of the generated image\n"
|
41 |
+
"- '/h <height>' will set the height of the generated image\n"
|
42 |
+
"- '/s <seed>' sets the next seed\n"
|
43 |
+
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
|
44 |
+
"- '/n <steps>' sets the number of steps\n"
|
45 |
+
"- '/q' to quit"
|
46 |
+
)
|
47 |
+
|
48 |
+
while (prompt := input(user_question)).startswith("/"):
|
49 |
+
if prompt.startswith("/w"):
|
50 |
+
if prompt.count(" ") != 1:
|
51 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
52 |
+
continue
|
53 |
+
_, width = prompt.split()
|
54 |
+
options.width = 16 * (int(width) // 16)
|
55 |
+
print(
|
56 |
+
f"Setting resolution to {options.width} x {options.height} "
|
57 |
+
f"({options.height * options.width / 1e6:.2f}MP)"
|
58 |
+
)
|
59 |
+
elif prompt.startswith("/h"):
|
60 |
+
if prompt.count(" ") != 1:
|
61 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
62 |
+
continue
|
63 |
+
_, height = prompt.split()
|
64 |
+
options.height = 16 * (int(height) // 16)
|
65 |
+
print(
|
66 |
+
f"Setting resolution to {options.width} x {options.height} "
|
67 |
+
f"({options.height * options.width / 1e6:.2f}MP)"
|
68 |
+
)
|
69 |
+
elif prompt.startswith("/g"):
|
70 |
+
if prompt.count(" ") != 1:
|
71 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
72 |
+
continue
|
73 |
+
_, guidance = prompt.split()
|
74 |
+
options.guidance = float(guidance)
|
75 |
+
print(f"Setting guidance to {options.guidance}")
|
76 |
+
elif prompt.startswith("/s"):
|
77 |
+
if prompt.count(" ") != 1:
|
78 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
79 |
+
continue
|
80 |
+
_, seed = prompt.split()
|
81 |
+
options.seed = int(seed)
|
82 |
+
print(f"Setting seed to {options.seed}")
|
83 |
+
elif prompt.startswith("/n"):
|
84 |
+
if prompt.count(" ") != 1:
|
85 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
86 |
+
continue
|
87 |
+
_, steps = prompt.split()
|
88 |
+
options.num_steps = int(steps)
|
89 |
+
print(f"Setting seed to {options.num_steps}")
|
90 |
+
elif prompt.startswith("/q"):
|
91 |
+
print("Quitting")
|
92 |
+
return None
|
93 |
+
else:
|
94 |
+
if not prompt.startswith("/h"):
|
95 |
+
print(f"Got invalid command '{prompt}'\n{usage}")
|
96 |
+
print(usage)
|
97 |
+
if prompt != "":
|
98 |
+
options.prompt = prompt
|
99 |
+
return options
|
100 |
+
|
101 |
+
|
102 |
+
@torch.inference_mode()
|
103 |
+
def main(
|
104 |
+
name: str = "flux-schnell",
|
105 |
+
width: int = 1360,
|
106 |
+
height: int = 768,
|
107 |
+
seed: int = None,
|
108 |
+
prompt: str = (
|
109 |
+
"a photo of a forest with mist swirling around the tree trunks. The word "
|
110 |
+
'"FLUX" is painted over it in big, red brush strokes with visible texture'
|
111 |
+
),
|
112 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
113 |
+
num_steps: int = None,
|
114 |
+
loop: bool = False,
|
115 |
+
guidance: float = 3.5,
|
116 |
+
offload: bool = False,
|
117 |
+
output_dir: str = "output",
|
118 |
+
add_sampling_metadata: bool = True,
|
119 |
+
):
|
120 |
+
"""
|
121 |
+
Sample the flux model. Either interactively (set `--loop`) or run for a
|
122 |
+
single image.
|
123 |
+
Args:
|
124 |
+
name: Name of the model to load
|
125 |
+
height: height of the sample in pixels (should be a multiple of 16)
|
126 |
+
width: width of the sample in pixels (should be a multiple of 16)
|
127 |
+
seed: Set a seed for sampling
|
128 |
+
output_name: where to save the output image, `{idx}` will be replaced
|
129 |
+
by the index of the sample
|
130 |
+
prompt: Prompt used for sampling
|
131 |
+
device: Pytorch device
|
132 |
+
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
|
133 |
+
loop: start an interactive session and sample multiple times
|
134 |
+
guidance: guidance value used for guidance distillation
|
135 |
+
add_sampling_metadata: Add the prompt to the image Exif metadata
|
136 |
+
"""
|
137 |
+
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")
|
138 |
+
|
139 |
+
if name not in configs:
|
140 |
+
available = ", ".join(configs.keys())
|
141 |
+
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
|
142 |
+
|
143 |
+
torch_device = torch.device(device)
|
144 |
+
if num_steps is None:
|
145 |
+
num_steps = 4 if name == "flux-schnell" else 50
|
146 |
+
|
147 |
+
# allow for packing and conversion to latent space
|
148 |
+
height = 16 * (height // 16)
|
149 |
+
width = 16 * (width // 16)
|
150 |
+
|
151 |
+
output_name = os.path.join(output_dir, "img_{idx}.jpg")
|
152 |
+
if not os.path.exists(output_dir):
|
153 |
+
os.makedirs(output_dir)
|
154 |
+
idx = 0
|
155 |
+
else:
|
156 |
+
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]\.jpg$", fn)]
|
157 |
+
if len(fns) > 0:
|
158 |
+
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
|
159 |
+
else:
|
160 |
+
idx = 0
|
161 |
+
|
162 |
+
# init all components
|
163 |
+
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512)
|
164 |
+
clip = load_clip(torch_device)
|
165 |
+
model = load_flow_model(name, device="cpu" if offload else torch_device)
|
166 |
+
ae = load_ae(name, device="cpu" if offload else torch_device)
|
167 |
+
|
168 |
+
rng = torch.Generator(device="cpu")
|
169 |
+
opts = SamplingOptions(
|
170 |
+
prompt=prompt,
|
171 |
+
width=width,
|
172 |
+
height=height,
|
173 |
+
num_steps=num_steps,
|
174 |
+
guidance=guidance,
|
175 |
+
seed=seed,
|
176 |
+
)
|
177 |
+
|
178 |
+
if loop:
|
179 |
+
opts = parse_prompt(opts)
|
180 |
+
|
181 |
+
while opts is not None:
|
182 |
+
if opts.seed is None:
|
183 |
+
opts.seed = rng.seed()
|
184 |
+
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
|
185 |
+
t0 = time.perf_counter()
|
186 |
+
|
187 |
+
# prepare input
|
188 |
+
x = get_noise(
|
189 |
+
1,
|
190 |
+
opts.height,
|
191 |
+
opts.width,
|
192 |
+
device=torch_device,
|
193 |
+
dtype=torch.bfloat16,
|
194 |
+
seed=opts.seed,
|
195 |
+
)
|
196 |
+
opts.seed = None
|
197 |
+
if offload:
|
198 |
+
ae = ae.cpu()
|
199 |
+
torch.cuda.empty_cache()
|
200 |
+
t5, clip = t5.to(torch_device), clip.to(torch_device)
|
201 |
+
inp = prepare(t5, clip, x, prompt=opts.prompt)
|
202 |
+
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
|
203 |
+
|
204 |
+
# offload TEs to CPU, load model to gpu
|
205 |
+
if offload:
|
206 |
+
t5, clip = t5.cpu(), clip.cpu()
|
207 |
+
torch.cuda.empty_cache()
|
208 |
+
model = model.to(torch_device)
|
209 |
+
|
210 |
+
# denoise initial noise
|
211 |
+
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
|
212 |
+
|
213 |
+
# offload model, load autoencoder to gpu
|
214 |
+
if offload:
|
215 |
+
model.cpu()
|
216 |
+
torch.cuda.empty_cache()
|
217 |
+
ae.decoder.to(x.device)
|
218 |
+
|
219 |
+
# decode latents to pixel space
|
220 |
+
x = unpack(x.float(), opts.height, opts.width)
|
221 |
+
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
|
222 |
+
x = ae.decode(x)
|
223 |
+
t1 = time.perf_counter()
|
224 |
+
|
225 |
+
fn = output_name.format(idx=idx)
|
226 |
+
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
|
227 |
+
# bring into PIL format and save
|
228 |
+
x = x.clamp(-1, 1)
|
229 |
+
# x = embed_watermark(x.float())
|
230 |
+
x = rearrange(x[0], "c h w -> h w c")
|
231 |
+
|
232 |
+
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
|
233 |
+
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0]
|
234 |
+
|
235 |
+
if nsfw_score < NSFW_THRESHOLD:
|
236 |
+
exif_data = Image.Exif()
|
237 |
+
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
|
238 |
+
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
|
239 |
+
exif_data[ExifTags.Base.Model] = name
|
240 |
+
if add_sampling_metadata:
|
241 |
+
exif_data[ExifTags.Base.ImageDescription] = prompt
|
242 |
+
img.save(fn, exif=exif_data, quality=95, subsampling=0)
|
243 |
+
idx += 1
|
244 |
+
else:
|
245 |
+
print("Your generated image may contain NSFW content.")
|
246 |
+
|
247 |
+
if loop:
|
248 |
+
print("-" * 80)
|
249 |
+
opts = parse_prompt(opts)
|
250 |
+
else:
|
251 |
+
opts = None
|
252 |
+
|
253 |
+
|
254 |
+
def app():
|
255 |
+
Fire(main)
|
256 |
+
|
257 |
+
|
258 |
+
if __name__ == "__main__":
|
259 |
+
app()
|