Spaces:
Running
Running
File size: 5,318 Bytes
1e37f65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Fine Transformer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Libraries:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from audiolm_pytorch import HubertWithKmeans\n",
"from audiolm_pytorch import SemanticTransformer, SemanticTransformerTrainer\n",
"from audiolm_pytorch import CoarseTransformer, CoarseTransformerTrainer\n",
"from audiolm_pytorch import SoundStream, FineTransformer, FineTransformerTrainer\n",
"from audiolm_pytorch import AudioLMSoundStream, AudioLM, MusicLMSoundStream\n",
"from musiclm_pytorch import MuLaNEmbedQuantizer\n",
"from musiclm_pytorch import MuLaN, AudioSpectrogramTransformer, TextTransformer\n",
"import gc\n",
"from nltk.tokenize import word_tokenize\n",
"import nltk\n",
"import librosa\n",
"import numpy as np\n",
"import pickle"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[nltk_data] Downloading package punkt to\n",
"[nltk_data] C:\\Users\\hp\\AppData\\Roaming\\nltk_data...\n",
"[nltk_data] Package punkt is already up-to-date!\n"
]
}
],
"source": [
"nltk.download('punkt')\n",
"checkpoint_path = './models/hubert/hubert_base_ls960.pt'\n",
"kmeans_path = './models/hubert/hubert_base_ls960_L9_km500.bin'\n",
"\n",
"audio_output_dir = './audio'\n",
"batch_size = 1\n",
"data_max_length = 320 * 32\n",
"num_train_steps = 1000"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"training with dataset of 4806 samples and validating with randomly splitted 253 samples\n",
"spectrogram yielded shape of (65, 841), but had to be cropped to (64, 832) to be patchified for transformer\n",
"0: loss: 103.04938507080078\n",
"0: valid loss 11.681041717529297\n",
"0: saving model to results\n",
"training complete\n",
"save fine_transformer.pth\n"
]
}
],
"source": [
"audio_transformer = AudioSpectrogramTransformer(\n",
" dim = 512,\n",
" depth = 6,\n",
" heads = 8,\n",
" dim_head = 64,\n",
" spec_n_fft = 128,\n",
" spec_win_length = 24,\n",
" spec_aug_stretch_factor = 0.8\n",
")\n",
"\n",
"text_transformer = TextTransformer(\n",
" dim = 512,\n",
" depth = 6,\n",
" heads = 8,\n",
" dim_head = 64\n",
")\n",
"\n",
"mulan = MuLaN(\n",
" audio_transformer = audio_transformer,\n",
" text_transformer = text_transformer\n",
")\n",
"\n",
"quantizer = MuLaNEmbedQuantizer(\n",
" mulan = mulan, \n",
" conditioning_dims = (1024, 1024, 1024), \n",
" namespaces = ('semantic', 'coarse', 'fine')\n",
")\n",
"\n",
"\n",
"def train_fine_transformer():\n",
" soundstream = MusicLMSoundStream(\n",
" codebook_size=1024, \n",
" strides=(3, 4, 5, 8),\n",
" target_sample_hz=24000,\n",
" rq_num_quantizers=8\n",
" )\n",
"\n",
" if torch.cuda.is_available():\n",
" fine_transformer = FineTransformer(\n",
" num_coarse_quantizers = 4,\n",
" num_fine_quantizers = 4,\n",
" codebook_size = 1024,\n",
" dim = 1024,\n",
" depth = 6,\n",
" audio_text_condition = True\n",
" ).cuda()\n",
" else:\n",
" fine_transformer = FineTransformer(\n",
" num_coarse_quantizers = 4,\n",
" num_fine_quantizers = 4,\n",
" codebook_size = 1024,\n",
" dim = 1024,\n",
" depth = 6,\n",
" audio_text_condition = True\n",
" )\n",
"\n",
" trainer = FineTransformerTrainer(\n",
" transformer=fine_transformer,\n",
" codec=soundstream,\n",
" folder=audio_output_dir,\n",
" batch_size=batch_size,\n",
" data_max_length=data_max_length,\n",
" num_train_steps=num_train_steps,\n",
" audio_conditioner = quantizer\n",
" )\n",
"\n",
" trainer.train()\n",
" torch.save(fine_transformer.state_dict(), 'fine_transformer.pth')\n",
" print(\"save fine_transformer.pth\")\n",
" del fine_transformer, trainer, soundstream\n",
" gc.collect()\n",
"\n",
"\n",
"train_fine_transformer()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "myenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|