File size: 38,183 Bytes
1e37f65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# AudioLM"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Libraries:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2024-07-26 16:06:09 | WARNING | xformers | WARNING[XFORMERS]: xFormers can't load C++/CUDA extensions. xFormers was built for:\n",
      "    PyTorch 2.1.0+cu121 with CUDA 1201 (you have 2.1.0+cpu)\n",
      "    Python  3.11.6 (you have 3.11.2)\n",
      "  Please reinstall xformers (see https://github.com/facebookresearch/xformers#installing-xformers)\n",
      "  Memory-efficient attention, SwiGLU, sparse and more won't be available.\n",
      "  Set XFORMERS_MORE_DETAILS=1 for more details\n",
      "2024-07-26 16:06:09 | WARNING | xformers | Triton is not available, some optimizations will not be enabled.\n",
      "This is just a warning: triton is not available\n"
     ]
    }
   ],
   "source": [
    "import torch\n",
    "from audiolm_pytorch import HubertWithKmeans\n",
    "from audiolm_pytorch import SemanticTransformer\n",
    "from audiolm_pytorch import CoarseTransformer\n",
    "from audiolm_pytorch import FineTransformer\n",
    "from audiolm_pytorch import AudioLMSoundStream, AudioLM\n",
    "from musiclm_pytorch import MuLaNEmbedQuantizer\n",
    "from musiclm_pytorch import MuLaN, AudioSpectrogramTransformer, TextTransformer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "checkpoint_path = './models/hubert/hubert_base_ls960.pt'\n",
    "kmeans_path = './models/hubert/hubert_base_ls960_L9_km500.bin'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "wav2vec = HubertWithKmeans(checkpoint_path=checkpoint_path, kmeans_path=kmeans_path)\n",
    "\n",
    "soundstream = AudioLMSoundStream(\n",
    "    codebook_size=1024,  # Add this line to specify the codebook size\n",
    "    strides=(2, 4, 5, 8),\n",
    "    target_sample_hz=16000,\n",
    "    rq_num_quantizers=8\n",
    ")\n",
    "\n",
    "\n",
    "if torch.cuda.is_available():\n",
    "    semantic_transformer = SemanticTransformer(\n",
    "      num_semantic_tokens=wav2vec.codebook_size,\n",
    "      dim=1024,\n",
    "      depth=6,\n",
    "      audio_text_condition=True\n",
    "    ).cuda()\n",
    "\n",
    "    coarse_transformer = CoarseTransformer(\n",
    "      num_semantic_tokens=wav2vec.codebook_size,\n",
    "      codebook_size=1024,\n",
    "      num_coarse_quantizers=4,  # Consistent with training\n",
    "      dim=1024,\n",
    "      depth=6,\n",
    "      audio_text_condition=True\n",
    "    ).cuda()\n",
    "\n",
    "    fine_transformer = FineTransformer(\n",
    "      num_coarse_quantizers=4,  # Consistent with training\n",
    "      num_fine_quantizers=4,\n",
    "      codebook_size=1024,\n",
    "      dim=1024,\n",
    "      depth=6,\n",
    "      audio_text_condition=True\n",
    "    ).cuda()\n",
    "else:\n",
    "    semantic_transformer = SemanticTransformer(\n",
    "      num_semantic_tokens=wav2vec.codebook_size,\n",
    "      dim=1024,\n",
    "      depth=6,\n",
    "      audio_text_condition=True\n",
    "    )\n",
    "\n",
    "    coarse_transformer = CoarseTransformer(\n",
    "      num_semantic_tokens=wav2vec.codebook_size,\n",
    "      codebook_size=1024,\n",
    "      num_coarse_quantizers=4,  # Consistent with training\n",
    "      dim=1024,\n",
    "      depth=6,\n",
    "      audio_text_condition=True\n",
    "    )\n",
    "\n",
    "    fine_transformer = FineTransformer(\n",
    "      num_coarse_quantizers=4,  # Consistent with training\n",
    "      num_fine_quantizers=4,\n",
    "      codebook_size=1024,\n",
    "      dim=1024,\n",
    "      depth=6,\n",
    "      audio_text_condition=True\n",
    "    )\n",
    "\n",
    "semantic_transformer.load_state_dict(torch.load('semantic_transformer.pth'))\n",
    "coarse_transformer.load_state_dict(torch.load('coarse_transformer.pth'))\n",
    "fine_transformer.load_state_dict(torch.load('fine_transformer.pth'))\n",
    "\n",
    "audiolm = AudioLM(\n",
    "    wav2vec=wav2vec,\n",
    "    codec=soundstream,\n",
    "    semantic_transformer=semantic_transformer,\n",
    "    coarse_transformer=coarse_transformer,\n",
    "    fine_transformer=fine_transformer\n",
    ")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# MuLaN"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "audio_transformer = AudioSpectrogramTransformer(\n",
    "    dim = 512,\n",
    "    depth = 6,\n",
    "    heads = 8,\n",
    "    dim_head = 64,\n",
    "    spec_n_fft = 128,\n",
    "    spec_win_length = 24,\n",
    "    spec_aug_stretch_factor = 0.8\n",
    ")\n",
    "\n",
    "text_transformer = TextTransformer(\n",
    "    dim = 512,\n",
    "    depth = 6,\n",
    "    heads = 8,\n",
    "    dim_head = 64\n",
    ")\n",
    "\n",
    "mulan = MuLaN(\n",
    "    audio_transformer = audio_transformer,\n",
    "    text_transformer = text_transformer\n",
    ")\n",
    "\n",
    "quantizer = MuLaNEmbedQuantizer(\n",
    "    mulan = mulan,                         \n",
    "    conditioning_dims = (1024, 1024, 1024), \n",
    "    namespaces = ('semantic', 'coarse', 'fine')\n",
    ")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# MusicLM"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "from musiclm_pytorch import MusicLM\n",
    "\n",
    "if torch.cuda.is_available():\n",
    "    musiclm = MusicLM(\n",
    "    audio_lm = audiolm,\n",
    "    mulan_embed_quantizer = quantizer\n",
    "    ).cuda()\n",
    "else:\n",
    "  musiclm = MusicLM(\n",
    "    audio_lm = audiolm,\n",
    "    mulan_embed_quantizer = quantizer\n",
    "    )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Inference:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "    31 /    403\r"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[10], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mMusiclm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\n\u001b[0;32m      2\u001b[0m \u001b[43m    \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mcrazy EDM, heavy bang\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m      3\u001b[0m \u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[0;32m      4\u001b[0m \u001b[43m    \u001b[49m\u001b[43mprogress\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[0;32m      5\u001b[0m display_audio(res, \u001b[38;5;241m32000\u001b[39m)\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\audiocraft\\models\\genmodel.py:161\u001b[0m, in \u001b[0;36mBaseGenModel.generate\u001b[1;34m(self, descriptions, progress, return_tokens)\u001b[0m\n\u001b[0;32m    159\u001b[0m attributes, prompt_tokens \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_prepare_tokens_and_attributes(descriptions, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m    160\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m prompt_tokens \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m--> 161\u001b[0m tokens \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_generate_tokens\u001b[49m\u001b[43m(\u001b[49m\u001b[43mattributes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprompt_tokens\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprogress\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    162\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m return_tokens:\n\u001b[0;32m    163\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgenerate_audio(tokens), tokens\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\audiocraft\\models\\musicgen.py:256\u001b[0m, in \u001b[0;36mMusicGen._generate_tokens\u001b[1;34m(self, attributes, prompt_tokens, progress)\u001b[0m\n\u001b[0;32m    253\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mduration \u001b[38;5;241m<\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_duration:\n\u001b[0;32m    254\u001b[0m     \u001b[38;5;66;03m# generate by sampling from LM, simple case.\u001b[39;00m\n\u001b[0;32m    255\u001b[0m     \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mautocast:\n\u001b[1;32m--> 256\u001b[0m         gen_tokens \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlm\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    257\u001b[0m \u001b[43m            \u001b[49m\u001b[43mprompt_tokens\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattributes\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    258\u001b[0m \u001b[43m            \u001b[49m\u001b[43mcallback\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallback\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_gen_len\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtotal_gen_len\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgeneration_params\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    260\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m    261\u001b[0m     \u001b[38;5;66;03m# now this gets a bit messier, we need to handle prompts,\u001b[39;00m\n\u001b[0;32m    262\u001b[0m     \u001b[38;5;66;03m# melody conditioning etc.\u001b[39;00m\n\u001b[0;32m    263\u001b[0m     ref_wavs \u001b[38;5;241m=\u001b[39m [attr\u001b[38;5;241m.\u001b[39mwav[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mself_wav\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;28;01mfor\u001b[39;00m attr \u001b[38;5;129;01min\u001b[39;00m attributes]\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\torch\\utils\\_contextlib.py:115\u001b[0m, in \u001b[0;36mcontext_decorator.<locals>.decorate_context\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    112\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[0;32m    113\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdecorate_context\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m    114\u001b[0m     \u001b[38;5;28;01mwith\u001b[39;00m ctx_factory():\n\u001b[1;32m--> 115\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\audiocraft\\models\\lm.py:510\u001b[0m, in \u001b[0;36mLMModel.generate\u001b[1;34m(self, prompt, conditions, num_samples, max_gen_len, use_sampling, temp, top_k, top_p, cfg_coef, two_step_cfg, remove_prompts, check, callback, **kwargs)\u001b[0m\n\u001b[0;32m    508\u001b[0m     \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (curr_sequence \u001b[38;5;241m==\u001b[39m unknown_token)\u001b[38;5;241m.\u001b[39many()\n\u001b[0;32m    509\u001b[0m \u001b[38;5;66;03m# sample next token from the model, next token shape is [B, K, 1]\u001b[39;00m\n\u001b[1;32m--> 510\u001b[0m next_token \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sample_next_token\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    511\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcurr_sequence\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcfg_conditions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43munconditional_state\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_sampling\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_k\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    512\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcfg_coef\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcfg_coef\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtwo_step_cfg\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtwo_step_cfg\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    513\u001b[0m \u001b[38;5;66;03m# ensure the tokens that should be masked are properly set to special_token_id\u001b[39;00m\n\u001b[0;32m    514\u001b[0m \u001b[38;5;66;03m# as the model never output special_token_id\u001b[39;00m\n\u001b[0;32m    515\u001b[0m valid_mask \u001b[38;5;241m=\u001b[39m mask[\u001b[38;5;241m.\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;241m.\u001b[39m, offset:offset\u001b[38;5;241m+\u001b[39m\u001b[38;5;241m1\u001b[39m]\u001b[38;5;241m.\u001b[39mexpand(B, \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\audiocraft\\models\\lm.py:369\u001b[0m, in \u001b[0;36mLMModel._sample_next_token\u001b[1;34m(self, sequence, cfg_conditions, unconditional_state, use_sampling, temp, top_k, top_p, cfg_coef, two_step_cfg)\u001b[0m\n\u001b[0;32m    366\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m condition_tensors:\n\u001b[0;32m    367\u001b[0m     \u001b[38;5;66;03m# Preparing for CFG, predicting both conditional and unconditional logits.\u001b[39;00m\n\u001b[0;32m    368\u001b[0m     sequence \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mcat([sequence, sequence], dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n\u001b[1;32m--> 369\u001b[0m all_logits \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    370\u001b[0m \u001b[43m    \u001b[49m\u001b[43msequence\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    371\u001b[0m \u001b[43m    \u001b[49m\u001b[43mconditions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcondition_tensors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcondition_tensors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    372\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m condition_tensors:\n\u001b[0;32m    373\u001b[0m     cond_logits, uncond_logits \u001b[38;5;241m=\u001b[39m all_logits\u001b[38;5;241m.\u001b[39msplit(B, dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)  \u001b[38;5;66;03m# [B, K, T, card]\u001b[39;00m\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\torch\\nn\\modules\\module.py:1518\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1516\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)  \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[0;32m   1517\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m-> 1518\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\torch\\nn\\modules\\module.py:1527\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1522\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[0;32m   1523\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[0;32m   1524\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[0;32m   1525\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[0;32m   1526\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[1;32m-> 1527\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1529\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m   1530\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\audiocraft\\models\\lm.py:257\u001b[0m, in \u001b[0;36mLMModel.forward\u001b[1;34m(self, sequence, conditions, condition_tensors, stage)\u001b[0m\n\u001b[0;32m    253\u001b[0m     \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m conditions, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mShouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt pass both conditions and condition_tensors.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    255\u001b[0m input_, cross_attention_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfuser(input_, condition_tensors)\n\u001b[1;32m--> 257\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtransformer\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcross_attention_src\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcross_attention_input\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    258\u001b[0m \u001b[43m                       \u001b[49m\u001b[43msrc_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mattn_mask_per_stage\u001b[49m\u001b[43m[\u001b[49m\u001b[43mstage\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mstage\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m>\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    259\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mout_norm:\n\u001b[0;32m    260\u001b[0m     out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mout_norm(out)\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\torch\\nn\\modules\\module.py:1518\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1516\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)  \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[0;32m   1517\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m-> 1518\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\torch\\nn\\modules\\module.py:1527\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1522\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[0;32m   1523\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[0;32m   1524\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[0;32m   1525\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[0;32m   1526\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[1;32m-> 1527\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1529\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m   1530\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\audiocraft\\modules\\transformer.py:708\u001b[0m, in \u001b[0;36mStreamingTransformer.forward\u001b[1;34m(self, x, *args, **kwargs)\u001b[0m\n\u001b[0;32m    705\u001b[0m     x \u001b[38;5;241m=\u001b[39m x \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpositional_scale \u001b[38;5;241m*\u001b[39m pos_emb\n\u001b[0;32m    707\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m layer \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlayers:\n\u001b[1;32m--> 708\u001b[0m     x \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_apply_layer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlayer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    710\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_is_streaming:\n\u001b[0;32m    711\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_streaming_state[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124moffsets\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m offsets \u001b[38;5;241m+\u001b[39m T\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\audiocraft\\modules\\transformer.py:665\u001b[0m, in \u001b[0;36mStreamingTransformer._apply_layer\u001b[1;34m(self, layer, *args, **kwargs)\u001b[0m\n\u001b[0;32m    663\u001b[0m method \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcheckpointing\n\u001b[0;32m    664\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m method \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnone\u001b[39m\u001b[38;5;124m'\u001b[39m:\n\u001b[1;32m--> 665\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mlayer\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    666\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m method \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtorch\u001b[39m\u001b[38;5;124m'\u001b[39m:\n\u001b[0;32m    667\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m torch_checkpoint(layer, \u001b[38;5;241m*\u001b[39margs, use_reentrant\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\torch\\nn\\modules\\module.py:1518\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1516\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)  \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[0;32m   1517\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m-> 1518\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\torch\\nn\\modules\\module.py:1527\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1522\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[0;32m   1523\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[0;32m   1524\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[0;32m   1525\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[0;32m   1526\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[1;32m-> 1527\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1529\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m   1530\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\audiocraft\\modules\\transformer.py:563\u001b[0m, in \u001b[0;36mStreamingTransformerLayer.forward\u001b[1;34m(self, src, src_mask, src_key_padding_mask, cross_attention_src)\u001b[0m\n\u001b[0;32m    559\u001b[0m     x \u001b[38;5;241m=\u001b[39m x \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlayer_scale_1(\n\u001b[0;32m    560\u001b[0m         \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sa_block(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnorm1(x), src_mask, src_key_padding_mask))\n\u001b[0;32m    561\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m cross_attention_src \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m    562\u001b[0m         x \u001b[38;5;241m=\u001b[39m x \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlayer_scale_cross(\n\u001b[1;32m--> 563\u001b[0m             \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_cross_attention_block\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    564\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnorm_cross\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcross_attention_src\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m    565\u001b[0m     x \u001b[38;5;241m=\u001b[39m x \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlayer_scale_2(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_ff_block(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnorm2(x)))\n\u001b[0;32m    566\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\audiocraft\\modules\\transformer.py:546\u001b[0m, in \u001b[0;36mStreamingTransformerLayer._cross_attention_block\u001b[1;34m(self, src, cross_attention_src)\u001b[0m\n\u001b[0;32m    544\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcross_attention \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m    545\u001b[0m \u001b[38;5;66;03m# queries are from src, keys and values from cross_attention_src.\u001b[39;00m\n\u001b[1;32m--> 546\u001b[0m x \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcross_attention\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    547\u001b[0m \u001b[43m    \u001b[49m\u001b[43msrc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcross_attention_src\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcross_attention_src\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mneed_weights\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m    548\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdropout_cross(x)\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\torch\\nn\\modules\\module.py:1518\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1516\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)  \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[0;32m   1517\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m-> 1518\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\torch\\nn\\modules\\module.py:1527\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[1;34m(self, *args, **kwargs)\u001b[0m\n\u001b[0;32m   1522\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[0;32m   1523\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[0;32m   1524\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[0;32m   1525\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[0;32m   1526\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[1;32m-> 1527\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1529\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m   1530\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n",
      "File \u001b[1;32md:\\Sunil\\Mini Project\\MusicLM\\myenv\\Lib\\site-packages\\audiocraft\\modules\\transformer.py:356\u001b[0m, in \u001b[0;36mStreamingMultiheadAttention.forward\u001b[1;34m(self, query, key, value, key_padding_mask, need_weights, attn_mask, average_attn_weights, is_causal)\u001b[0m\n\u001b[0;32m    354\u001b[0m q \u001b[38;5;241m=\u001b[39m nn\u001b[38;5;241m.\u001b[39mfunctional\u001b[38;5;241m.\u001b[39mlinear(query, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39min_proj_weight[:dim], bias_q)\n\u001b[0;32m    355\u001b[0m \u001b[38;5;66;03m# todo: when streaming, we could actually save k, v and check the shape actually match.\u001b[39;00m\n\u001b[1;32m--> 356\u001b[0m k \u001b[38;5;241m=\u001b[39m \u001b[43mnn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunctional\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinear\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43min_proj_weight\u001b[49m\u001b[43m[\u001b[49m\u001b[43mdim\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mdim\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbias_k\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    357\u001b[0m v \u001b[38;5;241m=\u001b[39m nn\u001b[38;5;241m.\u001b[39mfunctional\u001b[38;5;241m.\u001b[39mlinear(value, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39min_proj_weight[\u001b[38;5;241m2\u001b[39m \u001b[38;5;241m*\u001b[39m dim:], bias_v)\n\u001b[0;32m    358\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mqk_layer_norm \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n",
      "\u001b[1;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "music = musiclm('the crystalline sounds of the piano in a ballroom', num_samples = 4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "torch.save(music, 'generated_music.pt')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torchaudio\n",
    "output_path = \"out.wav\"\n",
    "sample_rate = 44100\n",
    "torchaudio.save(output_path, music.cpu() , sample_rate)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "myenv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}