import argparse from concurrent.futures import ProcessPoolExecutor import logging import os from pathlib import Path import subprocess as sp import sys from tempfile import NamedTemporaryFile import time import typing as tp import warnings import torch import gradio as gr from audiocraft.data.audio_utils import convert_audio from audiocraft.data.audio import audio_write from audiocraft.models import MusicGen MODEL = None # Last used model INTERRUPTING = False pool = ProcessPoolExecutor(4) pool.__enter__() class FileCleaner: def __init__(self, file_lifetime: float = 3600): self.file_lifetime = file_lifetime self.files = [] def add(self, path: tp.Union[str, Path]): self._cleanup() self.files.append((time.time(), Path(path))) def _cleanup(self): now = time.time() for time_added, path in list(self.files): if now - time_added > self.file_lifetime: if path.exists(): path.unlink() self.files.pop(0) else: break file_cleaner = FileCleaner() def load_model(version='facebook/musicgen-small'): global MODEL print("Loading model", version) if MODEL is None or MODEL.name != version: del MODEL torch.cuda.empty_cache() MODEL = None MODEL = MusicGen.get_pretrained(version) def _do_predictions(texts, duration): MODEL.set_generation_params(duration=duration) outputs = MODEL.generate(texts) outputs = outputs.detach().cpu().float() out_wavs = [] for output in outputs: with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: audio_write( file.name, output, MODEL.sample_rate, strategy="loudness", loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) out_wavs.append(file.name) file_cleaner.add(file.name) return out_wavs def predict(text, duration): load_model('facebook/musicgen-small') wav_files = _do_predictions([text], duration) return wav_files[0] # Return the first file in the list def ui(launch_kwargs): with gr.Blocks() as demo: gr.Markdown( """ # MusicGen This demo uses the MusicGen model to generate music based on a text prompt. """ ) with gr.Row(): text = gr.Text(label="Input Text", interactive=True) duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True) submit = gr.Button("Submit") with gr.Row(): audio_output = gr.Audio(label="Generated Music", type='filepath') submit.click(predict, inputs=[text, duration], outputs=[audio_output]) gr.Markdown(""" ### More details This model generates audio based on a textual description. You can specify the duration of the generated audio. """) demo.queue(max_size=8 * 4).launch(**launch_kwargs) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '--listen', type=str, default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1', help='IP to listen on for connections to Gradio', ) parser.add_argument( '--username', type=str, default='', help='Username for authentication' ) parser.add_argument( '--password', type=str, default='', help='Password for authentication' ) parser.add_argument( '--server_port', type=int, default=0, help='Port to run the server listener on', ) parser.add_argument( '--inbrowser', action='store_true', help='Open in browser' ) parser.add_argument( '--share', action='store_true', help='Share the gradio UI' ) args = parser.parse_args() launch_kwargs = {} launch_kwargs['server_name'] = args.listen if args.username and args.password: launch_kwargs['auth'] = (args.username, args.password) if args.server_port: launch_kwargs['server_port'] = args.server_port if args.inbrowser: launch_kwargs['inbrowser'] = args.inbrowser if args.share: launch_kwargs['share'] = args.share logging.basicConfig(level=logging.INFO, stream=sys.stderr) # Show the interface ui(launch_kwargs)