Spaces:
Configuration error
Configuration error
import random | |
import torch | |
import torch.nn.functional as F | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from torchvision.transforms.functional import crop | |
from models.video_model import VideoModel | |
from util.atlas_utils import ( | |
load_neural_atlases_models, | |
get_frames_data, | |
get_high_res_atlas, | |
get_atlas_crops, | |
reconstruct_video_layer, | |
create_uv_mask, | |
get_masks_boundaries, | |
get_random_crop_params, | |
get_atlas_bounding_box, | |
) | |
from util.util import load_video | |
class AtlasDataset(Dataset): | |
def __init__(self, config): | |
self.config = config | |
self.device = config["device"] | |
self.min_size = min(self.config["resx"], self.config["resy"]) | |
self.max_size = max(self.config["resx"], self.config["resy"]) | |
data_folder = f"data/videos/{self.config['checkpoint_path'].split('/')[2]}" | |
self.original_video = load_video( | |
data_folder, | |
resize=(self.config["resy"], self.config["resx"]), | |
num_frames=self.config["maximum_number_of_frames"], | |
).to(self.device) | |
( | |
foreground_mapping, | |
background_mapping, | |
foreground_atlas_model, | |
background_atlas_model, | |
alpha_model, | |
) = load_neural_atlases_models(config) | |
( | |
original_background_all_uvs, | |
original_foreground_all_uvs, | |
self.all_alpha, | |
foreground_atlas_alpha, | |
) = get_frames_data( | |
config, | |
foreground_mapping, | |
background_mapping, | |
alpha_model, | |
) | |
self.background_reconstruction = reconstruct_video_layer(original_background_all_uvs, background_atlas_model) | |
# using original video for the foreground layer | |
self.foreground_reconstruction = self.original_video * self.all_alpha | |
( | |
self.background_all_uvs, | |
self.scaled_background_uvs, | |
self.background_min_u, | |
self.background_min_v, | |
self.background_max_u, | |
self.background_max_v, | |
) = self.preprocess_uv_values( | |
original_background_all_uvs, config["grid_atlas_resolution"], device=self.device, layer="background" | |
) | |
( | |
self.foreground_all_uvs, | |
self.scaled_foreground_uvs, | |
self.foreground_min_u, | |
self.foreground_min_v, | |
self.foreground_max_u, | |
self.foreground_max_v, | |
) = self.preprocess_uv_values( | |
original_foreground_all_uvs, config["grid_atlas_resolution"], device=self.device, layer="foreground" | |
) | |
self.background_uv_mask = create_uv_mask( | |
config, | |
background_mapping, | |
self.background_min_u, | |
self.background_min_v, | |
self.background_max_u, | |
self.background_max_v, | |
uv_shift=-0.5, | |
resolution_shift=1, | |
) | |
self.foreground_uv_mask = create_uv_mask( | |
config, | |
foreground_mapping, | |
self.foreground_min_u, | |
self.foreground_min_v, | |
self.foreground_max_u, | |
self.foreground_max_v, | |
uv_shift=0.5, | |
resolution_shift=0, | |
) | |
self.background_grid_atlas = get_high_res_atlas( | |
background_atlas_model, | |
self.background_min_v, | |
self.background_min_u, | |
self.background_max_v, | |
self.background_max_u, | |
config["grid_atlas_resolution"], | |
device=config["device"], | |
layer="background", | |
) | |
self.foreground_grid_atlas = get_high_res_atlas( | |
foreground_atlas_model, | |
self.foreground_min_v, | |
self.foreground_min_u, | |
self.foreground_max_v, | |
self.foreground_max_u, | |
config["grid_atlas_resolution"], | |
device=config["device"], | |
layer="foreground", | |
) | |
if config["return_atlas_alpha"]: | |
self.foreground_atlas_alpha = foreground_atlas_alpha # used for visualizations | |
self.cnn_min_crop_size = 2 ** self.config["num_scales"] + 1 | |
if self.config["finetune_foreground"]: | |
self.mask_boundaries = get_masks_boundaries( | |
alpha_video=self.all_alpha.cpu(), | |
border=self.config["masks_border_expansion"], | |
threshold=self.config["mask_alpha_threshold"], | |
min_crop_size=self.cnn_min_crop_size, | |
) | |
self.cropped_foreground_atlas, self.foreground_atlas_bbox = get_atlas_bounding_box( | |
self.mask_boundaries, self.foreground_grid_atlas, self.foreground_all_uvs | |
) | |
self.step = -1 | |
crop_transforms = transforms.Compose( | |
[ | |
transforms.RandomApply( | |
[transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1)], | |
p=0.1, | |
), | |
] | |
) | |
self.crop_aug = crop_transforms | |
self.dist = self.config["center_frame_distance"] | |
def preprocess_uv_values(layer_uv_values, resolution, device="cuda", layer="background"): | |
if layer == "background": | |
shift = 1 | |
else: | |
shift = 0 | |
uv_values = (layer_uv_values + shift) * resolution | |
min_u, min_v = uv_values.reshape(-1, 2).min(dim=0).values.long() | |
uv_values -= torch.tensor([min_u, min_v], device=device) | |
max_u, max_v = uv_values.reshape(-1, 2).max(dim=0).values.ceil().long() | |
edge_size = torch.tensor([max_u, max_v], device=device) | |
scaled_uv_values = ((uv_values.reshape(-1, 2) / edge_size) * 2 - 1).unsqueeze(1).unsqueeze(0) | |
return uv_values, scaled_uv_values, min_u, min_v, max_u, max_v | |
def get_random_crop_data(self, crop_size): | |
t = random.randint(0, self.config["maximum_number_of_frames"] - 1) | |
y_start, x_start, h_crop, w_crop = get_random_crop_params((self.config["resx"], self.config["resy"]), crop_size) | |
return y_start, x_start, h_crop, w_crop, t | |
def get_global_crops_multi(self): | |
foreground_atlas_crops = [] | |
background_atlas_crops = [] | |
foreground_uvs = [] | |
background_uvs = [] | |
background_alpha_crops = [] | |
foreground_alpha_crops = [] | |
original_background_crops = [] | |
original_foreground_crops = [] | |
output_dict = {} | |
t = random.randint(self.dist, self.config["maximum_number_of_frames"] - 1 - self.dist) | |
flip = torch.rand(1) < self.config["flip_p"] | |
if self.config["finetune_foreground"]: | |
for cur_frame in [t - self.dist, t, t + self.dist]: | |
y_start, x_start, frame_h, frame_w = self.mask_boundaries[cur_frame].tolist() | |
crop_size = ( | |
max( | |
random.randint(round(self.config["crops_min_cover"] * frame_h), frame_h), | |
self.cnn_min_crop_size, | |
), | |
max( | |
random.randint(round(self.config["crops_min_cover"] * frame_w), frame_w), | |
self.cnn_min_crop_size, | |
), | |
) | |
y_crop, x_crop, h_crop, w_crop = get_random_crop_params((frame_w, frame_h), crop_size) | |
foreground_uv = self.foreground_all_uvs[ | |
cur_frame, | |
y_start + y_crop : y_start + y_crop + h_crop, | |
x_start + x_crop : x_start + x_crop + w_crop, | |
] | |
alpha = self.all_alpha[ | |
[cur_frame], | |
:, | |
y_start + y_crop : y_start + y_crop + h_crop, | |
x_start + x_crop : x_start + x_crop + w_crop, | |
] | |
original_foreground_crop = self.foreground_reconstruction[ | |
[cur_frame], | |
:, | |
y_start + y_crop : y_start + y_crop + h_crop, | |
x_start + x_crop : x_start + x_crop + w_crop, | |
] | |
original_foreground_crop = self.crop_aug(original_foreground_crop) | |
foreground_alpha_crops.append(alpha.flip(-1) if flip else alpha) | |
foreground_uvs.append(foreground_uv) # not scaled | |
original_foreground_crops.append( | |
original_foreground_crop.flip(-1) if flip else original_foreground_crop | |
) | |
foreground_min_vals = torch.tensor( | |
[self.config["grid_atlas_resolution"]] * 2, device=self.device, dtype=torch.long | |
) | |
foreground_max_vals = torch.tensor([0] * 2, device=self.device, dtype=torch.long) | |
for uv_values in foreground_uvs: | |
min_uv = uv_values.amin(dim=[0, 1]).long() | |
max_uv = uv_values.amax(dim=[0, 1]).ceil().long() | |
foreground_min_vals = torch.minimum(foreground_min_vals, min_uv) | |
foreground_max_vals = torch.maximum(foreground_max_vals, max_uv) | |
h_v = foreground_max_vals[1] - foreground_min_vals[1] | |
w_u = foreground_max_vals[0] - foreground_min_vals[0] | |
foreground_atlas_crop = crop( | |
self.foreground_grid_atlas, | |
foreground_min_vals[1], | |
foreground_min_vals[0], | |
h_v, | |
w_u, | |
) | |
foreground_atlas_crop = self.crop_aug(foreground_atlas_crop) | |
for i, uv_values in enumerate(foreground_uvs): | |
foreground_uvs[i] = ( | |
2 * (uv_values - foreground_min_vals) / (foreground_max_vals - foreground_min_vals) - 1 | |
).unsqueeze(0) | |
if flip: | |
foreground_uvs[i][:, :, :, 0] = -foreground_uvs[i][:, :, :, 0] | |
foreground_uvs[i] = foreground_uvs[i].flip(-2) | |
foreground_atlas_crops.append(foreground_atlas_crop.flip(-1) if flip else foreground_atlas_crop) | |
elif self.config["finetune_background"]: | |
crop_size = ( | |
random.randint(round(self.config["crops_min_cover"] * self.min_size), self.min_size), | |
random.randint(round(self.config["crops_min_cover"] * self.max_size), self.max_size), | |
) | |
crop_data = self.get_random_crop_data(crop_size) | |
y, x, h, w, _ = crop_data | |
background_uv = self.background_all_uvs[[t - self.dist, t, t + self.dist], y : y + h, x : x + w] | |
original_background_crop = self.background_reconstruction[ | |
[t - self.dist, t, t + self.dist], :, y : y + h, x : x + w | |
] | |
alpha = self.all_alpha[[t - self.dist, t, t + self.dist], :, y : y + h, x : x + w] | |
original_background_crop = self.crop_aug(original_background_crop) | |
original_background_crops = [ | |
el.unsqueeze(0).flip(-1) if flip else el.unsqueeze(0) for el in original_background_crop | |
] | |
background_alpha_crops = [el.unsqueeze(0).flip(-1) if flip else el.unsqueeze(0) for el in alpha] | |
background_atlas_crop, background_min_vals, background_max_vals = get_atlas_crops( | |
background_uv, | |
self.background_grid_atlas, | |
self.crop_aug, | |
) | |
background_uv = 2 * (background_uv - background_min_vals) / (background_max_vals - background_min_vals) - 1 | |
if flip: | |
background_uv[:, :, :, 0] = -background_uv[:, :, :, 0] | |
background_uv = background_uv.flip(-2) | |
background_atlas_crops = [ | |
el.unsqueeze(0).flip(-1) if flip else el.unsqueeze(0) for el in background_atlas_crop | |
] | |
background_uvs = [el.unsqueeze(0) for el in background_uv] | |
if self.config["finetune_foreground"]: | |
output_dict["foreground_alpha"] = foreground_alpha_crops | |
output_dict["foreground_uvs"] = foreground_uvs | |
output_dict["original_foreground_crops"] = original_foreground_crops | |
output_dict["foreground_atlas_crops"] = foreground_atlas_crops | |
elif self.config["finetune_background"]: | |
output_dict["background_alpha"] = background_alpha_crops | |
output_dict["background_uvs"] = background_uvs | |
output_dict["original_background_crops"] = original_background_crops | |
output_dict["background_atlas_crops"] = background_atlas_crops | |
return output_dict | |
def render_video_from_atlas(self, model, layer="background", foreground_padding_mode="replicate"): | |
if layer == "background": | |
grid_atlas = self.background_grid_atlas | |
all_uvs = self.scaled_background_uvs | |
uv_mask = self.background_uv_mask | |
else: | |
grid_atlas = self.cropped_foreground_atlas | |
full_grid_atlas = self.foreground_grid_atlas | |
all_uvs = self.scaled_foreground_uvs | |
uv_mask = crop(self.foreground_uv_mask, *self.foreground_atlas_bbox) | |
atlas_edit_only = model.netG(grid_atlas) | |
edited_atlas_dict = model.render(atlas_edit_only, bg_image=grid_atlas) | |
if layer == "foreground": | |
atlas_edit_only = torch.nn.functional.pad( | |
atlas_edit_only, | |
pad=( | |
self.foreground_atlas_bbox[1], | |
full_grid_atlas.shape[-1] - (self.foreground_atlas_bbox[1] + self.foreground_atlas_bbox[3]), | |
self.foreground_atlas_bbox[0], | |
full_grid_atlas.shape[-2] - (self.foreground_atlas_bbox[0] + self.foreground_atlas_bbox[2]), | |
), | |
mode=foreground_padding_mode, | |
) | |
edit = F.grid_sample( | |
atlas_edit_only, all_uvs, mode="bilinear", align_corners=self.config["align_corners"] | |
).clamp(min=0.0, max=1.0) | |
edit = edit.squeeze().t() # shape (batch, 3) | |
edit = ( | |
edit.reshape(self.config["maximum_number_of_frames"], self.config["resy"], self.config["resx"], 4) | |
.permute(0, 3, 1, 2) | |
.clamp(min=0.0, max=1.0) | |
) | |
edit_dict = model.render(edit, bg_image=self.original_video) | |
return edited_atlas_dict, edit_dict, uv_mask | |
def get_whole_atlas(self): | |
if self.config["finetune_foreground"]: | |
atlas = self.cropped_foreground_atlas | |
else: | |
atlas = self.background_grid_atlas | |
atlas = VideoModel.resize_crops(atlas, 3) | |
return atlas | |
def __getitem__(self, index): | |
self.step += 1 | |
sample = {"step": self.step} | |
sample["global_crops"] = self.get_global_crops_multi() | |
if self.config["input_entire_atlas"] and ((self.step + 1) % self.config["entire_atlas_every"] == 0): | |
sample["input_image"] = self.get_whole_atlas() | |
return sample | |
def __len__(self): | |
return 1 | |