File size: 2,718 Bytes
9f4b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import argparse
import os
import subprocess
from pathlib import Path
from config import hparams as hp
from nota_wav2lip import Wav2LipModelComparisonDemo
LRS_ORIGINAL_URL = os.getenv('LRS_ORIGINAL_URL', None)
LRS_COMPRESSED_URL = os.getenv('LRS_COMPRESSED_URL', None)
if not Path(hp.inference.model.wav2lip.checkpoint).exists() and LRS_ORIGINAL_URL is not None:
subprocess.call(f"wget --no-check-certificate -O {hp.inference.model.wav2lip.checkpoint} {LRS_ORIGINAL_URL}", shell=True)
if not Path(hp.inference.model.nota_wav2lip.checkpoint).exists() and LRS_COMPRESSED_URL is not None:
subprocess.call(f"wget --no-check-certificate -O {hp.inference.model.nota_wav2lip.checkpoint} {LRS_COMPRESSED_URL}", shell=True)
def parse_args():
parser = argparse.ArgumentParser(description="NotaWav2Lip: Inference snippet for your own video and audio pair")
parser.add_argument(
'-a',
'--audio-input',
type=str,
required=True,
help="Path of the audio file"
)
parser.add_argument(
'-v',
'--video-frame-input',
type=str,
required=True,
help="Input directory with face image sequence. We recommend to extract the face image sequence with `preprocess.py`."
)
parser.add_argument(
'-b',
'--bbox-input',
type=str,
help="Path of the file with bbox coordinates. We recommend to extract the json file with `preprocess.py`."
"If None, it pretends that the json file is located at the same directory with face images: {VIDEO_FRAME_INPUT}.with_suffix('.json')."
)
parser.add_argument(
'-m',
'--model',
choices=['wav2lip', 'nota_wav2lip'],
default='nota_wav2ilp',
help="Model for generating talking video. Defaults: nota_wav2lip"
)
parser.add_argument(
'-o',
'--output-dir',
type=str,
default="result",
help="Output directory to save the result. Defaults: result"
)
parser.add_argument(
'-d',
'--device',
choices=['cpu', 'cuda'],
default='cpu',
help="Device setting for model inference. Defaults: cpu"
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
bbox_input = args.bbox_input if args.bbox_input is not None \
else Path(args.video_frame_input).with_suffix('.json')
servicer = Wav2LipModelComparisonDemo(device=args.device, result_dir=args.output_dir, model_list=args.model)
servicer.update_audio(args.audio_input, name='a0')
servicer.update_video(args.video_frame_input, bbox_input, name='v0')
servicer.save_as_video('a0', 'v0', args.model)
|