lipSync / nota_wav2lip /models /wav2lip_compressed.py
Suprath's picture
Upload 54 files
9f4b9c7 verified
import torch
from torch import nn
from nota_wav2lip.models.base import Wav2LipBase
from nota_wav2lip.models.conv import Conv2d, Conv2dTranspose
class NotaWav2Lip(Wav2LipBase):
def __init__(self, nef=4, naf=8, ndf=8, x_size=96):
super().__init__()
assert x_size in [96, 128]
self.ker_sz_last = x_size // 32
self.face_encoder_blocks = nn.ModuleList([
nn.Sequential(Conv2d(6, nef, kernel_size=7, stride=1, padding=3)), # 96,96
nn.Sequential(Conv2d(nef, nef * 2, kernel_size=3, stride=2, padding=1),), # 48,48
nn.Sequential(Conv2d(nef * 2, nef * 4, kernel_size=3, stride=2, padding=1),), # 24,24
nn.Sequential(Conv2d(nef * 4, nef * 8, kernel_size=3, stride=2, padding=1),), # 12,12
nn.Sequential(Conv2d(nef * 8, nef * 16, kernel_size=3, stride=2, padding=1),), # 6,6
nn.Sequential(Conv2d(nef * 16, nef * 32, kernel_size=3, stride=2, padding=1),), # 3,3
nn.Sequential(Conv2d(nef * 32, nef * 32, kernel_size=self.ker_sz_last, stride=1, padding=0), # 1, 1
Conv2d(nef * 32, nef * 32, kernel_size=1, stride=1, padding=0)), ])
self.audio_encoder = nn.Sequential(
Conv2d(1, naf, kernel_size=3, stride=1, padding=1),
Conv2d(naf, naf * 2, kernel_size=3, stride=(3, 1), padding=1),
Conv2d(naf * 2, naf * 4, kernel_size=3, stride=3, padding=1),
Conv2d(naf * 4, naf * 8, kernel_size=3, stride=(3, 2), padding=1),
Conv2d(naf * 8, naf * 16, kernel_size=3, stride=1, padding=0),
Conv2d(naf * 16, naf * 16, kernel_size=1, stride=1, padding=0), )
self.face_decoder_blocks = nn.ModuleList([
nn.Sequential(Conv2d(naf * 16, naf * 16, kernel_size=1, stride=1, padding=0), ),
nn.Sequential(Conv2dTranspose(nef * 32 + naf * 16, ndf * 16, kernel_size=self.ker_sz_last, stride=1, padding=0),),
# 3,3 # 512+512 = 1024
nn.Sequential(
Conv2dTranspose(nef * 32 + ndf * 16, ndf * 16, kernel_size=3, stride=2, padding=1, output_padding=1),), # 6, 6
# 512+512 = 1024
nn.Sequential(
Conv2dTranspose(nef * 16 + ndf * 16, ndf * 12, kernel_size=3, stride=2, padding=1, output_padding=1),), # 12, 12
# 256+512 = 768
nn.Sequential(
Conv2dTranspose(nef * 8 + ndf * 12, ndf * 8, kernel_size=3, stride=2, padding=1, output_padding=1),), # 24, 24
# 128+384 = 512
nn.Sequential(
Conv2dTranspose(nef * 4 + ndf * 8, ndf * 4, kernel_size=3, stride=2, padding=1, output_padding=1),), # 48, 48
# 64+256 = 320
nn.Sequential(
Conv2dTranspose(nef * 2 + ndf * 4, ndf * 2, kernel_size=3, stride=2, padding=1, output_padding=1),), # 96,96
# 32+128 = 160
])
self.output_block = nn.Sequential(Conv2d(nef + ndf * 2, ndf, kernel_size=3, stride=1, padding=1), # 16+64 = 80
nn.Conv2d(ndf, 3, kernel_size=1, stride=1, padding=0),
nn.Sigmoid())