import streamlit as st import time from datetime import datetime from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan,SpeechT5ForTextToSpeech import numpy as np import torch from io import StringIO import soundfile as sf html_temp= """

Text-to-Speech

""" st.markdown(html_temp,unsafe_allow_html=True) st.markdown( """ This is an AI tool. This tool will convert your text into audio. You can also drop you text file here and download the audio file. """ ) model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") speaker_embeddings = np.load("cmu_us_slt_arctic-wav-arctic_a0499.npy") speaker_embeddings = torch.tensor(speaker_embeddings).unsqueeze(0) text = st.text_area("Type your text..") st.button("Convert") inputs = processor(text=text, return_tensors="pt") spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) with torch.no_grad(): speech = vocoder(spectrogram) sf.write("speech.wav", speech.numpy(), samplerate=16000) audio_file = open('speech.wav', 'rb') audio_bytes = audio_file.read() st.audio(audio_bytes, format='audio/wav') uploaded_file=st.file_uploader("Upload your text file here",type=['txt'] ) if uploaded_file is not None: stringio = StringIO(uploaded_file.getvalue().decode("utf-8")) #To read file as string: text = stringio.read() st.write(text) st.button("Convert",key=1) inputs = processor(text=text, return_tensors="pt") spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) with torch.no_grad(): speech = vocoder(spectrogram) sf.write("speech.wav", speech.numpy(), samplerate=16000) audio_file = open('speech.wav', 'rb') audio_bytes = audio_file.read() st.audio(audio_bytes, format='audio/wav') st.text("Thanks for using") if st.button("About"): st.text("Created by Surendra Kumar") ## footer from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts from htbuilder.units import percent, px from htbuilder.funcs import rgba, rgb def image(src_as_string, **style): return img(src=src_as_string, style=styles(**style)) def link(link, text, **style): return a(_href=link, _target="_blank", style=styles(**style))(text) def layout(*args): style = """ """ style_div = styles( position="fixed", left=0, bottom=0, margin=px(0, 0, 0, 0), width=percent(100), color="black", text_align="center", height="auto", opacity=1 ) style_hr = styles( display="block", margin=px(8, 8, "auto", "auto"), border_style="solid", border_width=px(0.5) ) body = p() foot = div( style=style_div )( hr( style=style_hr ), body ) st.markdown(style,unsafe_allow_html=True) for arg in args: if isinstance(arg, str): body(arg) elif isinstance(arg, HtmlElement): body(arg) st.markdown(str(foot), unsafe_allow_html=True) def footer(): myargs = [ "©️ surendraKumar", br(), link("https://www.linkedin.com/in/surendra-kumar-51802022b", image('https://icons.getbootstrap.com/assets/icons/linkedin.svg') ), br(), link("https://www.instagram.com/im_surendra_dhaka/",image('https://icons.getbootstrap.com/assets/icons/instagram.svg')), ] layout(*myargs) if __name__ == "__main__": footer()