Spaces:
Runtime error
Runtime error
SwapnaneelBanerjee
commited on
Commit
•
ea40630
1
Parent(s):
49692b3
Upload 5 files
Browse files- app.py +74 -0
- ex1.jpg +0 -0
- ex2.jpeg +0 -0
- ex3.jpg +0 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
4 |
+
|
5 |
+
|
6 |
+
extractor = AutoFeatureExtractor.from_pretrained("susnato/plant_disease_detection-beans")
|
7 |
+
model = AutoModelForImageClassification.from_pretrained("susnato/plant_disease_detection-beans")
|
8 |
+
|
9 |
+
labels = ['angular_leaf_spot', 'rust', 'healthy']
|
10 |
+
|
11 |
+
def classify(im):
|
12 |
+
features = extractor(im, return_tensors='pt')
|
13 |
+
logits = model(features["pixel_values"])[-1]
|
14 |
+
probability = torch.nn.functional.softmax(logits, dim=-1)
|
15 |
+
probs = probability[0].detach().numpy()
|
16 |
+
confidences = {label: float(probs[i]) for i, label in enumerate(labels)}
|
17 |
+
return confidences
|
18 |
+
|
19 |
+
|
20 |
+
block = gr.Blocks(theme="JohnSmith9982/small_and_pretty")
|
21 |
+
with block:
|
22 |
+
gr.HTML(
|
23 |
+
"""
|
24 |
+
<h1 align="center">PLANT DISEASE DETECTION<h1>
|
25 |
+
"""
|
26 |
+
)
|
27 |
+
with gr.Group():
|
28 |
+
with gr.Row():
|
29 |
+
gr.HTML(
|
30 |
+
"""
|
31 |
+
<p style="color:black">
|
32 |
+
<h4 style="font-color:powderblue;">
|
33 |
+
<center>Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. <br><br>
|
34 |
+
Using Computer Vision models in plant disease detection and diagnosis has the potential to revolutionize the way we approach agriculture. By providing real-time monitoring and accurate detection of plant diseases, A.I. can help farmers reduce costs and increase crop</center>
|
35 |
+
</h4>
|
36 |
+
</p>
|
37 |
+
|
38 |
+
<p align="center">
|
39 |
+
<img src="https://huggingface.co/datasets/susnato/stock_images/resolve/main/merged.png">
|
40 |
+
</p>
|
41 |
+
"""
|
42 |
+
)
|
43 |
+
|
44 |
+
with gr.Group():
|
45 |
+
with gr.Row():
|
46 |
+
gr.HTML(
|
47 |
+
"""
|
48 |
+
<center><h3>Our Approach</h3></center>
|
49 |
+
|
50 |
+
<p align="center">
|
51 |
+
<img src="https://huggingface.co/datasets/susnato/stock_images/resolve/main/diagram2.png">
|
52 |
+
</p>
|
53 |
+
"""
|
54 |
+
)
|
55 |
+
|
56 |
+
with gr.Group():
|
57 |
+
image = gr.Image(type='pil')
|
58 |
+
outputs = gr.Label()
|
59 |
+
button = gr.Button("Classify")
|
60 |
+
|
61 |
+
button.click(classify,
|
62 |
+
inputs=[image],
|
63 |
+
outputs=[outputs],
|
64 |
+
)
|
65 |
+
|
66 |
+
with gr.Group():
|
67 |
+
gr.Examples(["ex3.jpg"],
|
68 |
+
fn=classify,
|
69 |
+
inputs=[image],
|
70 |
+
outputs=[outputs],
|
71 |
+
cache_examples=True
|
72 |
+
)
|
73 |
+
|
74 |
+
block.launch(debug=False, share=False)
|
ex1.jpg
ADDED
ex2.jpeg
ADDED
ex3.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
datasets
|
3 |
+
torchvision
|
4 |
+
git+https://github.com/huggingface/transformers
|
5 |
+
gradio
|