NewHair / model.py
TDN-M's picture
Update model.py
bac9b67 verified
from __future__ import annotations
import argparse
import os
import pathlib
import subprocess
import sys
from typing import Callable, Union
import dlib
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
import torchvision.transforms as T
if os.getenv("SYSTEM") == "spaces" and not torch.cuda.is_available():
with open("patch.e4e") as f:
subprocess.run("patch -p1".split(), cwd="encoder4editing", stdin=f)
with open("patch.hairclip") as f:
subprocess.run("patch -p1".split(), cwd="HairCLIP", stdin=f)
app_dir = pathlib.Path(__file__).parent
e4e_dir = app_dir / "encoder4editing"
sys.path.insert(0, e4e_dir.as_posix())
from models.psp import pSp
from utils.alignment import align_face
hairclip_dir = app_dir / "HairCLIP"
mapper_dir = hairclip_dir / "mapper"
sys.path.insert(0, hairclip_dir.as_posix())
sys.path.insert(0, mapper_dir.as_posix())
from mapper.datasets.latents_dataset_inference import LatentsDatasetInference
from mapper.hairclip_mapper import HairCLIPMapper
class Model:
def __init__(self):
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.landmark_model = self._create_dlib_landmark_model()
self.e4e = self._load_e4e()
self.hairclip = self._load_hairclip()
self.transform = self._create_transform()
@staticmethod
def _create_dlib_landmark_model():
path = huggingface_hub.hf_hub_download(
"public-data/dlib_face_landmark_model", "shape_predictor_68_face_landmarks.dat"
)
return dlib.shape_predictor(path)
def _load_e4e(self) -> nn.Module:
ckpt_path = huggingface_hub.hf_hub_download("public-data/e4e", "e4e_ffhq_encode.pt")
ckpt = torch.load(ckpt_path, map_location="cpu")
opts = ckpt["opts"]
opts["device"] = self.device.type
opts["checkpoint_path"] = ckpt_path
opts = argparse.Namespace(**opts)
model = pSp(opts)
model.to(self.device)
model.eval()
return model
def _load_hairclip(self) -> nn.Module:
ckpt_path = huggingface_hub.hf_hub_download("public-data/HairCLIP", "hairclip.pt")
ckpt = torch.load(ckpt_path, map_location="cpu")
opts = ckpt["opts"]
opts["device"] = self.device.type
opts["checkpoint_path"] = ckpt_path
opts["editing_type"] = "both"
opts["input_type"] = "text"
opts["hairstyle_description"] = "HairCLIP/mapper/hairstyle_list.txt"
opts["color_description"] = "red"
opts = argparse.Namespace(**opts)
model = HairCLIPMapper(opts)
model.to(self.device)
model.eval()
return model
@staticmethod
def _create_transform() -> Callable:
transform = T.Compose(
[
T.Resize(256),
T.CenterCrop(256),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
return transform
def detect_and_align_face(self, image: str) -> PIL.Image.Image:
image = align_face(filepath=image, predictor=self.landmark_model)
return image
@staticmethod
def denormalize(tensor: torch.Tensor) -> torch.Tensor:
return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8)
def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
tensor = self.denormalize(tensor)
return tensor.cpu().numpy().transpose(1, 2, 0)
@torch.inference_mode()
def reconstruct_face(self, image: PIL.Image.Image) -> tuple[np.ndarray, torch.Tensor]:
input_data = self.transform(image).unsqueeze(0).to(self.device)
reconstructed_images, latents = self.e4e(input_data, randomize_noise=False, return_latents=True)
reconstructed = torch.clamp(reconstructed_images[0].detach(), -1, 1)
reconstructed = self.postprocess(reconstructed)
return reconstructed, latents[0]
@torch.inference_mode()
def generate(
self, editing_type: str, hairstyle_index: int, color_description: str, latent: torch.Tensor
) -> np.ndarray:
# Giả sử dataset được tạo hoặc lấy từ một phương thức hoặc thuộc tính nào đó
dataset = self.prepare_dataset(editing_type, hairstyle_index, color_description, latent)
if dataset is None or not dataset:
raise ValueError("Dataset không được tạo hoặc là rỗng")
if dataset[0] is None:
raise ValueError("Phần tử đầu tiên của dataset là None, không thể tiếp tục")
w, hairstyle_text_inputs_list, color_text_inputs_list = dataset[0][:3]
# Tiếp tục xử lý với w, hairstyle_text_inputs_list, và color_text_inputs_list
opts = self.hairclip.opts
opts.editing_type = editing_type
opts.color_description = color_description
if editing_type == "color":
hairstyle_index = 0
device = torch.device(opts.device)
dataset = LatentsDatasetInference(latents=latent.unsqueeze(0).cpu(), opts=opts)
w, hairstyle_text_inputs_list, color_text_inputs_list = dataset[0][:3]
w = w.unsqueeze(0).to(device)
hairstyle_text_inputs = hairstyle_text_inputs_list[hairstyle_index].unsqueeze(0).to(device)
color_text_inputs = color_text_inputs_list[0].unsqueeze(0).to(device)
hairstyle_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device)
color_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device)
w_hat = w + 0.1 * self.hairclip.mapper(
w,
hairstyle_text_inputs,
color_text_inputs,
hairstyle_tensor_hairmasked,
color_tensor_hairmasked,
)
x_hat, _ = self.hairclip.decoder(
[w_hat],
input_is_latent=True,
return_latents=True,
randomize_noise=False,
truncation=1,
)
res = torch.clamp(x_hat[0].detach(), -1, 1)
res = self.postprocess(res)
return res