Update
Browse files- .pre-commit-config.yaml +60 -36
- .style.yapf +0 -5
- .vscode/settings.json +30 -0
- app.py +34 -48
- model.py +41 -46
- style.css +1 -0
.pre-commit-config.yaml
CHANGED
@@ -1,37 +1,61 @@
|
|
1 |
-
exclude: ^patch
|
2 |
repos:
|
3 |
-
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exclude: ^patch
|
2 |
repos:
|
3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
+
rev: v4.6.0
|
5 |
+
hooks:
|
6 |
+
- id: check-executables-have-shebangs
|
7 |
+
- id: check-json
|
8 |
+
- id: check-merge-conflict
|
9 |
+
- id: check-shebang-scripts-are-executable
|
10 |
+
- id: check-toml
|
11 |
+
- id: check-yaml
|
12 |
+
- id: end-of-file-fixer
|
13 |
+
- id: mixed-line-ending
|
14 |
+
args: ["--fix=lf"]
|
15 |
+
- id: requirements-txt-fixer
|
16 |
+
- id: trailing-whitespace
|
17 |
+
- repo: https://github.com/myint/docformatter
|
18 |
+
rev: v1.7.5
|
19 |
+
hooks:
|
20 |
+
- id: docformatter
|
21 |
+
args: ["--in-place"]
|
22 |
+
- repo: https://github.com/pycqa/isort
|
23 |
+
rev: 5.13.2
|
24 |
+
hooks:
|
25 |
+
- id: isort
|
26 |
+
args: ["--profile", "black"]
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v1.10.0
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
args: ["--ignore-missing-imports"]
|
32 |
+
additional_dependencies:
|
33 |
+
[
|
34 |
+
"types-python-slugify",
|
35 |
+
"types-requests",
|
36 |
+
"types-PyYAML",
|
37 |
+
"types-pytz",
|
38 |
+
]
|
39 |
+
- repo: https://github.com/psf/black
|
40 |
+
rev: 24.4.2
|
41 |
+
hooks:
|
42 |
+
- id: black
|
43 |
+
language_version: python3.10
|
44 |
+
args: ["--line-length", "119"]
|
45 |
+
- repo: https://github.com/kynan/nbstripout
|
46 |
+
rev: 0.7.1
|
47 |
+
hooks:
|
48 |
+
- id: nbstripout
|
49 |
+
args:
|
50 |
+
[
|
51 |
+
"--extra-keys",
|
52 |
+
"metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
|
53 |
+
]
|
54 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
55 |
+
rev: 1.8.5
|
56 |
+
hooks:
|
57 |
+
- id: nbqa-black
|
58 |
+
- id: nbqa-pyupgrade
|
59 |
+
args: ["--py37-plus"]
|
60 |
+
- id: nbqa-isort
|
61 |
+
args: ["--float-to-top"]
|
.style.yapf
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
[style]
|
2 |
-
based_on_style = pep8
|
3 |
-
blank_line_before_nested_class_or_def = false
|
4 |
-
spaces_before_comment = 2
|
5 |
-
split_before_logical_operator = true
|
|
|
|
|
|
|
|
|
|
|
|
.vscode/settings.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"editor.formatOnSave": true,
|
3 |
+
"files.insertFinalNewline": false,
|
4 |
+
"[python]": {
|
5 |
+
"editor.defaultFormatter": "ms-python.black-formatter",
|
6 |
+
"editor.formatOnType": true,
|
7 |
+
"editor.codeActionsOnSave": {
|
8 |
+
"source.organizeImports": "explicit"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"[jupyter]": {
|
12 |
+
"files.insertFinalNewline": false
|
13 |
+
},
|
14 |
+
"black-formatter.args": [
|
15 |
+
"--line-length=119"
|
16 |
+
],
|
17 |
+
"isort.args": ["--profile", "black"],
|
18 |
+
"flake8.args": [
|
19 |
+
"--max-line-length=119"
|
20 |
+
],
|
21 |
+
"ruff.lint.args": [
|
22 |
+
"--line-length=119"
|
23 |
+
],
|
24 |
+
"notebook.output.scrolling": true,
|
25 |
+
"notebook.formatOnCellExecution": true,
|
26 |
+
"notebook.formatOnSave.enabled": true,
|
27 |
+
"notebook.codeActionsOnSave": {
|
28 |
+
"source.organizeImports": "explicit"
|
29 |
+
}
|
30 |
+
}
|
app.py
CHANGED
@@ -8,14 +8,14 @@ import gradio as gr
|
|
8 |
|
9 |
from model import Model
|
10 |
|
11 |
-
DESCRIPTION =
|
12 |
|
13 |
<center><img id="teaser" src="https://raw.githubusercontent.com/wty-ustc/HairCLIP/main/assets/teaser.png" alt="teaser"></center>
|
14 |
-
|
15 |
|
16 |
|
17 |
def load_hairstyle_list() -> list[str]:
|
18 |
-
with open(
|
19 |
lines = [line.strip() for line in f.readlines()]
|
20 |
lines = [line[:-10] for line in lines]
|
21 |
return lines
|
@@ -27,78 +27,64 @@ def set_example_image(example: list) -> dict:
|
|
27 |
|
28 |
def update_step2_components(choice: str) -> tuple[dict, dict]:
|
29 |
return (
|
30 |
-
gr.Dropdown.update(visible=choice in [
|
31 |
-
gr.Textbox.update(visible=choice in [
|
32 |
)
|
33 |
|
34 |
|
35 |
model = Model()
|
36 |
|
37 |
-
with gr.Blocks(css=
|
38 |
gr.Markdown(DESCRIPTION)
|
39 |
with gr.Box():
|
40 |
-
gr.Markdown(
|
41 |
with gr.Row():
|
42 |
with gr.Column():
|
43 |
with gr.Row():
|
44 |
-
input_image = gr.Image(label=
|
45 |
-
type='filepath')
|
46 |
with gr.Row():
|
47 |
-
preprocess_button = gr.Button(
|
48 |
with gr.Column():
|
49 |
-
aligned_face = gr.Image(label=
|
50 |
-
type='pil',
|
51 |
-
interactive=False)
|
52 |
with gr.Column():
|
53 |
-
reconstructed_face = gr.Image(label=
|
54 |
-
type='numpy')
|
55 |
latent = gr.Variable()
|
56 |
|
57 |
with gr.Row():
|
58 |
-
paths = sorted(pathlib.Path(
|
59 |
-
gr.Examples(examples=[[path.as_posix()] for path in paths],
|
60 |
-
inputs=input_image)
|
61 |
|
62 |
with gr.Box():
|
63 |
-
gr.Markdown(
|
64 |
with gr.Row():
|
65 |
with gr.Column():
|
66 |
with gr.Row():
|
67 |
editing_type = gr.Radio(
|
68 |
-
label=
|
69 |
-
|
70 |
-
value='both',
|
71 |
-
type='value')
|
72 |
with gr.Row():
|
73 |
hairstyles = load_hairstyle_list()
|
74 |
-
hairstyle_index = gr.Dropdown(label=
|
75 |
-
choices=hairstyles,
|
76 |
-
value='afro',
|
77 |
-
type='index')
|
78 |
with gr.Row():
|
79 |
-
color_description = gr.Textbox(label=
|
80 |
with gr.Row():
|
81 |
-
run_button = gr.Button(
|
82 |
|
83 |
with gr.Column():
|
84 |
-
result = gr.Image(label=
|
85 |
-
|
86 |
-
preprocess_button.click(fn=model.detect_and_align_face,
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
color_description,
|
100 |
-
latent,
|
101 |
-
],
|
102 |
-
outputs=result)
|
103 |
|
104 |
demo.queue(max_size=10).launch()
|
|
|
8 |
|
9 |
from model import Model
|
10 |
|
11 |
+
DESCRIPTION = """# [HairCLIP](https://github.com/wty-ustc/HairCLIP)
|
12 |
|
13 |
<center><img id="teaser" src="https://raw.githubusercontent.com/wty-ustc/HairCLIP/main/assets/teaser.png" alt="teaser"></center>
|
14 |
+
"""
|
15 |
|
16 |
|
17 |
def load_hairstyle_list() -> list[str]:
|
18 |
+
with open("HairCLIP/mapper/hairstyle_list.txt") as f:
|
19 |
lines = [line.strip() for line in f.readlines()]
|
20 |
lines = [line[:-10] for line in lines]
|
21 |
return lines
|
|
|
27 |
|
28 |
def update_step2_components(choice: str) -> tuple[dict, dict]:
|
29 |
return (
|
30 |
+
gr.Dropdown.update(visible=choice in ["hairstyle", "both"]),
|
31 |
+
gr.Textbox.update(visible=choice in ["color", "both"]),
|
32 |
)
|
33 |
|
34 |
|
35 |
model = Model()
|
36 |
|
37 |
+
with gr.Blocks(css="style.css") as demo:
|
38 |
gr.Markdown(DESCRIPTION)
|
39 |
with gr.Box():
|
40 |
+
gr.Markdown("## Step 1")
|
41 |
with gr.Row():
|
42 |
with gr.Column():
|
43 |
with gr.Row():
|
44 |
+
input_image = gr.Image(label="Input Image", type="filepath")
|
|
|
45 |
with gr.Row():
|
46 |
+
preprocess_button = gr.Button("Preprocess")
|
47 |
with gr.Column():
|
48 |
+
aligned_face = gr.Image(label="Aligned Face", type="pil", interactive=False)
|
|
|
|
|
49 |
with gr.Column():
|
50 |
+
reconstructed_face = gr.Image(label="Reconstructed Face", type="numpy")
|
|
|
51 |
latent = gr.Variable()
|
52 |
|
53 |
with gr.Row():
|
54 |
+
paths = sorted(pathlib.Path("images").glob("*.jpg"))
|
55 |
+
gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image)
|
|
|
56 |
|
57 |
with gr.Box():
|
58 |
+
gr.Markdown("## Step 2")
|
59 |
with gr.Row():
|
60 |
with gr.Column():
|
61 |
with gr.Row():
|
62 |
editing_type = gr.Radio(
|
63 |
+
label="Editing Type", choices=["hairstyle", "color", "both"], value="both", type="value"
|
64 |
+
)
|
|
|
|
|
65 |
with gr.Row():
|
66 |
hairstyles = load_hairstyle_list()
|
67 |
+
hairstyle_index = gr.Dropdown(label="Hairstyle", choices=hairstyles, value="afro", type="index")
|
|
|
|
|
|
|
68 |
with gr.Row():
|
69 |
+
color_description = gr.Textbox(label="Color", value="red")
|
70 |
with gr.Row():
|
71 |
+
run_button = gr.Button("Run")
|
72 |
|
73 |
with gr.Column():
|
74 |
+
result = gr.Image(label="Result")
|
75 |
+
|
76 |
+
preprocess_button.click(fn=model.detect_and_align_face, inputs=input_image, outputs=aligned_face)
|
77 |
+
aligned_face.change(fn=model.reconstruct_face, inputs=aligned_face, outputs=[reconstructed_face, latent])
|
78 |
+
editing_type.change(fn=update_step2_components, inputs=editing_type, outputs=[hairstyle_index, color_description])
|
79 |
+
run_button.click(
|
80 |
+
fn=model.generate,
|
81 |
+
inputs=[
|
82 |
+
editing_type,
|
83 |
+
hairstyle_index,
|
84 |
+
color_description,
|
85 |
+
latent,
|
86 |
+
],
|
87 |
+
outputs=result,
|
88 |
+
)
|
|
|
|
|
|
|
|
|
89 |
|
90 |
demo.queue(max_size=10).launch()
|
model.py
CHANGED
@@ -15,22 +15,22 @@ import torch
|
|
15 |
import torch.nn as nn
|
16 |
import torchvision.transforms as T
|
17 |
|
18 |
-
if os.getenv(
|
19 |
-
with open(
|
20 |
-
subprocess.run(
|
21 |
-
with open(
|
22 |
-
subprocess.run(
|
23 |
|
24 |
app_dir = pathlib.Path(__file__).parent
|
25 |
|
26 |
-
e4e_dir = app_dir /
|
27 |
sys.path.insert(0, e4e_dir.as_posix())
|
28 |
|
29 |
from models.psp import pSp
|
30 |
from utils.alignment import align_face
|
31 |
|
32 |
-
hairclip_dir = app_dir /
|
33 |
-
mapper_dir = hairclip_dir /
|
34 |
sys.path.insert(0, hairclip_dir.as_posix())
|
35 |
sys.path.insert(0, mapper_dir.as_posix())
|
36 |
|
@@ -40,8 +40,7 @@ from mapper.hairclip_mapper import HairCLIPMapper
|
|
40 |
|
41 |
class Model:
|
42 |
def __init__(self):
|
43 |
-
self.device = torch.device(
|
44 |
-
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
45 |
self.landmark_model = self._create_dlib_landmark_model()
|
46 |
self.e4e = self._load_e4e()
|
47 |
self.hairclip = self._load_hairclip()
|
@@ -50,17 +49,16 @@ class Model:
|
|
50 |
@staticmethod
|
51 |
def _create_dlib_landmark_model():
|
52 |
path = huggingface_hub.hf_hub_download(
|
53 |
-
|
54 |
-
|
55 |
return dlib.shape_predictor(path)
|
56 |
|
57 |
def _load_e4e(self) -> nn.Module:
|
58 |
-
ckpt_path = huggingface_hub.hf_hub_download(
|
59 |
-
|
60 |
-
|
61 |
-
opts =
|
62 |
-
opts[
|
63 |
-
opts['checkpoint_path'] = ckpt_path
|
64 |
opts = argparse.Namespace(**opts)
|
65 |
model = pSp(opts)
|
66 |
model.to(self.device)
|
@@ -68,16 +66,15 @@ class Model:
|
|
68 |
return model
|
69 |
|
70 |
def _load_hairclip(self) -> nn.Module:
|
71 |
-
ckpt_path = huggingface_hub.hf_hub_download(
|
72 |
-
|
73 |
-
|
74 |
-
opts =
|
75 |
-
opts[
|
76 |
-
opts[
|
77 |
-
opts[
|
78 |
-
opts[
|
79 |
-
opts[
|
80 |
-
opts['color_description'] = 'red'
|
81 |
opts = argparse.Namespace(**opts)
|
82 |
model = HairCLIPMapper(opts)
|
83 |
model.to(self.device)
|
@@ -86,12 +83,14 @@ class Model:
|
|
86 |
|
87 |
@staticmethod
|
88 |
def _create_transform() -> Callable:
|
89 |
-
transform = T.Compose(
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
95 |
return transform
|
96 |
|
97 |
def detect_and_align_face(self, image: str) -> PIL.Image.Image:
|
@@ -107,35 +106,31 @@ class Model:
|
|
107 |
return tensor.cpu().numpy().transpose(1, 2, 0)
|
108 |
|
109 |
@torch.inference_mode()
|
110 |
-
def reconstruct_face(
|
111 |
-
self, image: PIL.Image.Image) -> tuple[np.ndarray, torch.Tensor]:
|
112 |
input_data = self.transform(image).unsqueeze(0).to(self.device)
|
113 |
-
reconstructed_images, latents = self.e4e(input_data,
|
114 |
-
randomize_noise=False,
|
115 |
-
return_latents=True)
|
116 |
reconstructed = torch.clamp(reconstructed_images[0].detach(), -1, 1)
|
117 |
reconstructed = self.postprocess(reconstructed)
|
118 |
return reconstructed, latents[0]
|
119 |
|
120 |
@torch.inference_mode()
|
121 |
-
def generate(
|
122 |
-
|
|
|
123 |
opts = self.hairclip.opts
|
124 |
opts.editing_type = editing_type
|
125 |
opts.color_description = color_description
|
126 |
|
127 |
-
if editing_type ==
|
128 |
hairstyle_index = 0
|
129 |
|
130 |
device = torch.device(opts.device)
|
131 |
|
132 |
-
dataset = LatentsDatasetInference(latents=latent.unsqueeze(0).cpu(),
|
133 |
-
opts=opts)
|
134 |
w, hairstyle_text_inputs_list, color_text_inputs_list = dataset[0][:3]
|
135 |
|
136 |
w = w.unsqueeze(0).to(device)
|
137 |
-
hairstyle_text_inputs = hairstyle_text_inputs_list[
|
138 |
-
hairstyle_index].unsqueeze(0).to(device)
|
139 |
color_text_inputs = color_text_inputs_list[0].unsqueeze(0).to(device)
|
140 |
|
141 |
hairstyle_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device)
|
|
|
15 |
import torch.nn as nn
|
16 |
import torchvision.transforms as T
|
17 |
|
18 |
+
if os.getenv("SYSTEM") == "spaces" and not torch.cuda.is_available():
|
19 |
+
with open("patch.e4e") as f:
|
20 |
+
subprocess.run("patch -p1".split(), cwd="encoder4editing", stdin=f)
|
21 |
+
with open("patch.hairclip") as f:
|
22 |
+
subprocess.run("patch -p1".split(), cwd="HairCLIP", stdin=f)
|
23 |
|
24 |
app_dir = pathlib.Path(__file__).parent
|
25 |
|
26 |
+
e4e_dir = app_dir / "encoder4editing"
|
27 |
sys.path.insert(0, e4e_dir.as_posix())
|
28 |
|
29 |
from models.psp import pSp
|
30 |
from utils.alignment import align_face
|
31 |
|
32 |
+
hairclip_dir = app_dir / "HairCLIP"
|
33 |
+
mapper_dir = hairclip_dir / "mapper"
|
34 |
sys.path.insert(0, hairclip_dir.as_posix())
|
35 |
sys.path.insert(0, mapper_dir.as_posix())
|
36 |
|
|
|
40 |
|
41 |
class Model:
|
42 |
def __init__(self):
|
43 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
44 |
self.landmark_model = self._create_dlib_landmark_model()
|
45 |
self.e4e = self._load_e4e()
|
46 |
self.hairclip = self._load_hairclip()
|
|
|
49 |
@staticmethod
|
50 |
def _create_dlib_landmark_model():
|
51 |
path = huggingface_hub.hf_hub_download(
|
52 |
+
"public-data/dlib_face_landmark_model", "shape_predictor_68_face_landmarks.dat"
|
53 |
+
)
|
54 |
return dlib.shape_predictor(path)
|
55 |
|
56 |
def _load_e4e(self) -> nn.Module:
|
57 |
+
ckpt_path = huggingface_hub.hf_hub_download("public-data/e4e", "e4e_ffhq_encode.pt")
|
58 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")
|
59 |
+
opts = ckpt["opts"]
|
60 |
+
opts["device"] = self.device.type
|
61 |
+
opts["checkpoint_path"] = ckpt_path
|
|
|
62 |
opts = argparse.Namespace(**opts)
|
63 |
model = pSp(opts)
|
64 |
model.to(self.device)
|
|
|
66 |
return model
|
67 |
|
68 |
def _load_hairclip(self) -> nn.Module:
|
69 |
+
ckpt_path = huggingface_hub.hf_hub_download("public-data/HairCLIP", "hairclip.pt")
|
70 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")
|
71 |
+
opts = ckpt["opts"]
|
72 |
+
opts["device"] = self.device.type
|
73 |
+
opts["checkpoint_path"] = ckpt_path
|
74 |
+
opts["editing_type"] = "both"
|
75 |
+
opts["input_type"] = "text"
|
76 |
+
opts["hairstyle_description"] = "HairCLIP/mapper/hairstyle_list.txt"
|
77 |
+
opts["color_description"] = "red"
|
|
|
78 |
opts = argparse.Namespace(**opts)
|
79 |
model = HairCLIPMapper(opts)
|
80 |
model.to(self.device)
|
|
|
83 |
|
84 |
@staticmethod
|
85 |
def _create_transform() -> Callable:
|
86 |
+
transform = T.Compose(
|
87 |
+
[
|
88 |
+
T.Resize(256),
|
89 |
+
T.CenterCrop(256),
|
90 |
+
T.ToTensor(),
|
91 |
+
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
|
92 |
+
]
|
93 |
+
)
|
94 |
return transform
|
95 |
|
96 |
def detect_and_align_face(self, image: str) -> PIL.Image.Image:
|
|
|
106 |
return tensor.cpu().numpy().transpose(1, 2, 0)
|
107 |
|
108 |
@torch.inference_mode()
|
109 |
+
def reconstruct_face(self, image: PIL.Image.Image) -> tuple[np.ndarray, torch.Tensor]:
|
|
|
110 |
input_data = self.transform(image).unsqueeze(0).to(self.device)
|
111 |
+
reconstructed_images, latents = self.e4e(input_data, randomize_noise=False, return_latents=True)
|
|
|
|
|
112 |
reconstructed = torch.clamp(reconstructed_images[0].detach(), -1, 1)
|
113 |
reconstructed = self.postprocess(reconstructed)
|
114 |
return reconstructed, latents[0]
|
115 |
|
116 |
@torch.inference_mode()
|
117 |
+
def generate(
|
118 |
+
self, editing_type: str, hairstyle_index: int, color_description: str, latent: torch.Tensor
|
119 |
+
) -> np.ndarray:
|
120 |
opts = self.hairclip.opts
|
121 |
opts.editing_type = editing_type
|
122 |
opts.color_description = color_description
|
123 |
|
124 |
+
if editing_type == "color":
|
125 |
hairstyle_index = 0
|
126 |
|
127 |
device = torch.device(opts.device)
|
128 |
|
129 |
+
dataset = LatentsDatasetInference(latents=latent.unsqueeze(0).cpu(), opts=opts)
|
|
|
130 |
w, hairstyle_text_inputs_list, color_text_inputs_list = dataset[0][:3]
|
131 |
|
132 |
w = w.unsqueeze(0).to(device)
|
133 |
+
hairstyle_text_inputs = hairstyle_text_inputs_list[hairstyle_index].unsqueeze(0).to(device)
|
|
|
134 |
color_text_inputs = color_text_inputs_list[0].unsqueeze(0).to(device)
|
135 |
|
136 |
hairstyle_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device)
|
style.css
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
h1 {
|
2 |
text-align: center;
|
|
|
3 |
}
|
4 |
|
5 |
img#teaser {
|
|
|
1 |
h1 {
|
2 |
text-align: center;
|
3 |
+
display: block;
|
4 |
}
|
5 |
|
6 |
img#teaser {
|