Spaces:
Running
on
Zero
Running
on
Zero
zR
commited on
Commit
•
6359a1f
1
Parent(s):
6c17684
init test
Browse files- app.py +87 -60
- requirements.txt +4 -4
app.py
CHANGED
@@ -1,51 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
from diffusers import
|
6 |
import torch
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
model_repo_id = "
|
10 |
|
11 |
if torch.cuda.is_available():
|
12 |
torch_dtype = torch.float16
|
13 |
else:
|
14 |
torch_dtype = torch.float32
|
15 |
|
16 |
-
pipe =
|
17 |
pipe = pipe.to(device)
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
-
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
-
#@spaces.GPU #[uncomment to use ZeroGPU]
|
23 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
-
|
28 |
generator = torch.Generator().manual_seed(seed)
|
29 |
-
|
30 |
image = pipe(
|
31 |
-
prompt
|
32 |
-
|
33 |
-
|
34 |
-
num_inference_steps
|
35 |
-
width
|
36 |
-
height
|
37 |
-
generator
|
38 |
-
).images[0]
|
39 |
-
|
40 |
return image, seed
|
41 |
|
|
|
42 |
examples = [
|
43 |
-
"
|
44 |
-
"
|
45 |
-
"A
|
46 |
]
|
47 |
|
48 |
-
css="""
|
49 |
#col-container {
|
50 |
margin: 0 auto;
|
51 |
max-width: 640px;
|
@@ -53,14 +77,28 @@ css="""
|
|
53 |
"""
|
54 |
|
55 |
with gr.Blocks(css=css) as demo:
|
56 |
-
|
57 |
with gr.Column(elem_id="col-container"):
|
58 |
gr.Markdown(f"""
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
""")
|
61 |
-
|
62 |
with gr.Row():
|
63 |
-
|
64 |
prompt = gr.Text(
|
65 |
label="Prompt",
|
66 |
show_label=False,
|
@@ -68,20 +106,11 @@ with gr.Blocks(css=css) as demo:
|
|
68 |
placeholder="Enter your prompt",
|
69 |
container=False,
|
70 |
)
|
71 |
-
|
72 |
run_button = gr.Button("Run", scale=0)
|
73 |
-
|
74 |
result = gr.Image(label="Result", show_label=False)
|
75 |
|
76 |
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
|
78 |
-
negative_prompt = gr.Text(
|
79 |
-
label="Negative prompt",
|
80 |
-
max_lines=1,
|
81 |
-
placeholder="Enter a negative prompt",
|
82 |
-
visible=False,
|
83 |
-
)
|
84 |
-
|
85 |
seed = gr.Slider(
|
86 |
label="Seed",
|
87 |
minimum=0,
|
@@ -89,54 +118,52 @@ with gr.Blocks(css=css) as demo:
|
|
89 |
step=1,
|
90 |
value=0,
|
91 |
)
|
92 |
-
|
93 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
94 |
-
|
95 |
with gr.Row():
|
96 |
-
|
97 |
width = gr.Slider(
|
98 |
label="Width",
|
99 |
-
minimum=
|
100 |
-
maximum=
|
101 |
step=32,
|
102 |
-
value=1024,
|
103 |
)
|
104 |
-
|
105 |
height = gr.Slider(
|
106 |
label="Height",
|
107 |
-
minimum=
|
108 |
-
maximum=
|
109 |
step=32,
|
110 |
-
value=1024,
|
111 |
)
|
112 |
-
|
113 |
with gr.Row():
|
114 |
-
|
115 |
guidance_scale = gr.Slider(
|
116 |
label="Guidance scale",
|
117 |
minimum=0.0,
|
118 |
maximum=10.0,
|
119 |
step=0.1,
|
120 |
-
value=
|
121 |
)
|
122 |
-
|
123 |
num_inference_steps = gr.Slider(
|
124 |
label="Number of inference steps",
|
125 |
-
minimum=
|
126 |
-
maximum=
|
127 |
step=1,
|
128 |
-
value=
|
129 |
)
|
130 |
-
|
131 |
gr.Examples(
|
132 |
-
examples
|
133 |
-
inputs
|
134 |
)
|
135 |
gr.on(
|
136 |
triggers=[run_button.click, prompt.submit],
|
137 |
-
fn
|
138 |
-
inputs
|
139 |
-
outputs
|
140 |
)
|
141 |
|
142 |
-
demo.queue().launch()
|
|
|
1 |
+
import os
|
2 |
+
import threading
|
3 |
+
import time
|
4 |
+
from datetime import datetime, timedelta
|
5 |
+
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
import random
|
9 |
+
import spaces # [uncomment to use ZeroGPU]
|
10 |
+
from diffusers import FluxPipeline
|
11 |
import torch
|
12 |
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
model_repo_id = "black-forest-labs/FLUX.1-dev"
|
15 |
|
16 |
if torch.cuda.is_available():
|
17 |
torch_dtype = torch.float16
|
18 |
else:
|
19 |
torch_dtype = torch.float32
|
20 |
|
21 |
+
pipe = FluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
22 |
pipe = pipe.to(device)
|
23 |
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
25 |
|
|
|
|
|
26 |
|
27 |
+
def delete_old_files():
|
28 |
+
while True:
|
29 |
+
now = datetime.now()
|
30 |
+
cutoff = now - timedelta(minutes=10)
|
31 |
+
directories = ["./gradio_tmp"]
|
32 |
+
|
33 |
+
for directory in directories:
|
34 |
+
for filename in os.listdir(directory):
|
35 |
+
file_path = os.path.join(directory, filename)
|
36 |
+
if os.path.isfile(file_path):
|
37 |
+
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
|
38 |
+
if file_mtime < cutoff:
|
39 |
+
os.remove(file_path)
|
40 |
+
time.sleep(600)
|
41 |
+
|
42 |
+
|
43 |
+
threading.Thread(target=delete_old_files, daemon=True).start()
|
44 |
+
|
45 |
+
|
46 |
+
@spaces.GPU # [uncomment to use ZeroGPU]
|
47 |
+
def infer(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
48 |
+
progress=gr.Progress(track_tqdm=True)):
|
49 |
if randomize_seed:
|
50 |
seed = random.randint(0, MAX_SEED)
|
51 |
+
|
52 |
generator = torch.Generator().manual_seed(seed)
|
53 |
+
|
54 |
image = pipe(
|
55 |
+
prompt=prompt,
|
56 |
+
guidance_scale=guidance_scale,
|
57 |
+
num_images_per_prompt=1,
|
58 |
+
num_inference_steps=num_inference_steps,
|
59 |
+
width=width,
|
60 |
+
height=height,
|
61 |
+
generator=generator
|
62 |
+
).images[0]
|
|
|
63 |
return image, seed
|
64 |
|
65 |
+
|
66 |
examples = [
|
67 |
+
"A vintage pink convertible with glossy chrome finishes and whitewall tires sits parked on an open road, surrounded by a field of wildflowers under a clear blue sky. The car's body is a delicate pastel pink, complementing the vibrant greens and colors of the meadow. Its interior boasts cream leather seats and a polished wooden dashboard, evoking a sense of classic elegance. The sun casts a soft light on the vehicle, highlighting its curves and shiny surfaces, creating a picture of nostalgia mixed with dreamy escapism.",
|
68 |
+
"A noble black Labrador retriever sits serenely in a sunlit meadow, its glossy coat absorbing the golden rays of a late afternoon sun. The dog's intelligent eyes sparkle with a mixture of curiosity and loyalty, as it gazes off into the distance where the meadow meets a line of tall, slender birch trees. The dog's posture is regal, yet approachable, with its tongue playfully hanging out to the side slightly, suggesting a friendly disposition. The idyllic setting is filled with the vibrant greens of lush grass and the soft colors of wildflowers speckled throughout, creating a peaceful harmony between the dog and its natural surroundings.",
|
69 |
+
"A vibrant red-colored dog of medium build stands attentively in an autumn forest setting. Its fur is a deep, rich red, reminiscent of autumn leaves, contrasting with its bright, intelligent eyes, a clear sky blue. The dog's ears perk up, and its tail wags slightly as it looks off into the distance, its posture suggesting alertness and curiosity. Golden sunlight filters through the canopy of russet and gold leaves above, casting dappled light onto the forest floor and the glossy coat of the canine, creating a serene and heartwarming scene."
|
70 |
]
|
71 |
|
72 |
+
css = """
|
73 |
#col-container {
|
74 |
margin: 0 auto;
|
75 |
max-width: 640px;
|
|
|
77 |
"""
|
78 |
|
79 |
with gr.Blocks(css=css) as demo:
|
|
|
80 |
with gr.Column(elem_id="col-container"):
|
81 |
gr.Markdown(f"""
|
82 |
+
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
|
83 |
+
CogView3-Plus Huggingface Space🤗
|
84 |
+
</div>
|
85 |
+
<div style="text-align: center;">
|
86 |
+
<a href="https://huggingface.co/THUDM/CogView3-Plus">🤗 Model Hub |
|
87 |
+
<a href="https://github.com/THUDM/CogView3">🌐 Github</a> |
|
88 |
+
<a href="https://arxiv.org/abs/2403.05121">📜 arxiv </a>
|
89 |
+
</div>
|
90 |
+
<div style="text-align: center;display: flex;justify-content: center;align-items: center;margin-top: 1em;margin-bottom: .5em;">
|
91 |
+
<span>If the Space is too busy, duplicate it to use privately</span>
|
92 |
+
<a href="https://huggingface.co/spaces/THUDM-HF-SPACE/CogView-3-Plus?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" width="160" style="
|
93 |
+
margin-left: .75em;
|
94 |
+
"></a>
|
95 |
+
</div>
|
96 |
+
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
|
97 |
+
⚠️ This demo is for academic research and experiential use only.
|
98 |
+
</div>
|
99 |
""")
|
100 |
+
|
101 |
with gr.Row():
|
|
|
102 |
prompt = gr.Text(
|
103 |
label="Prompt",
|
104 |
show_label=False,
|
|
|
106 |
placeholder="Enter your prompt",
|
107 |
container=False,
|
108 |
)
|
109 |
+
|
110 |
run_button = gr.Button("Run", scale=0)
|
|
|
111 |
result = gr.Image(label="Result", show_label=False)
|
112 |
|
113 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
seed = gr.Slider(
|
115 |
label="Seed",
|
116 |
minimum=0,
|
|
|
118 |
step=1,
|
119 |
value=0,
|
120 |
)
|
121 |
+
|
122 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
123 |
+
|
124 |
with gr.Row():
|
|
|
125 |
width = gr.Slider(
|
126 |
label="Width",
|
127 |
+
minimum=512,
|
128 |
+
maximum=2048,
|
129 |
step=32,
|
130 |
+
value=1024, # 替换为你的模型默认值
|
131 |
)
|
132 |
+
|
133 |
height = gr.Slider(
|
134 |
label="Height",
|
135 |
+
minimum=512,
|
136 |
+
maximum=2048,
|
137 |
step=32,
|
138 |
+
value=1024,
|
139 |
)
|
140 |
+
|
141 |
with gr.Row():
|
|
|
142 |
guidance_scale = gr.Slider(
|
143 |
label="Guidance scale",
|
144 |
minimum=0.0,
|
145 |
maximum=10.0,
|
146 |
step=0.1,
|
147 |
+
value=7.0,
|
148 |
)
|
149 |
+
|
150 |
num_inference_steps = gr.Slider(
|
151 |
label="Number of inference steps",
|
152 |
+
minimum=10,
|
153 |
+
maximum=100,
|
154 |
step=1,
|
155 |
+
value=50,
|
156 |
)
|
157 |
+
|
158 |
gr.Examples(
|
159 |
+
examples=examples,
|
160 |
+
inputs=[prompt]
|
161 |
)
|
162 |
gr.on(
|
163 |
triggers=[run_button.click, prompt.submit],
|
164 |
+
fn=infer,
|
165 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
166 |
+
outputs=[result, seed]
|
167 |
)
|
168 |
|
169 |
+
demo.queue().launch(server_name="127.0.0.1")
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
accelerate
|
2 |
-
diffusers
|
3 |
-
invisible_watermark
|
4 |
torch
|
5 |
-
|
|
|
6 |
xformers
|
|
|
1 |
+
accelerate>=0.34.2
|
2 |
+
diffusers>=0.30.3
|
|
|
3 |
torch
|
4 |
+
gradio>=4.44
|
5 |
+
transformers>=4.45.2
|
6 |
xformers
|