zR
update
040e362
from threading import Thread
import requests
from io import BytesIO
from PIL import Image
import re
import gradio as gr
import torch
import spaces
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
AutoImageProcessor,
TextIteratorStreamer,
)
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-edge-v-5b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("THUDM/glm-edge-v-5b", trust_remote_code=True, device_map="auto").eval()
processor = AutoImageProcessor.from_pretrained("THUDM/glm-edge-v-5b", trust_remote_code=True, device_map="auto")
def get_image(image):
if is_url(image):
response = requests.get(image)
return Image.open(BytesIO(response.content)).convert("RGB")
elif image:
return Image.open(image).convert("RGB")
def is_url(s):
if re.match(r'^(?:http|ftp)s?://', s):
return True
return False
def preprocess_messages(history, image):
messages = []
pixel_values = None
for idx, (user_msg, model_msg) in enumerate(history):
if idx == len(history) - 1 and not messages:
messages.append({"role": "user", "content": [{"type": "text", "text": user_msg}]})
break
if user_msg:
messages.append({"role": "user", "content": [{"type": "text", "text": user_msg}]})
if model_msg:
messages.append({"role": "assistant", "content": [{"type": "text", "text": model_msg}]})
if image:
messages[-1]['content'].append({"type": "image"})
try:
image_input = get_image(image)
pixel_values = torch.tensor(
processor(image_input).pixel_values).to(model.device)
except:
print("Invalid image path. Continuing with text conversation.")
return messages, pixel_values
@spaces.GPU()
def predict(history, max_length, top_p, temperature, image=None):
messages, pixel_values = preprocess_messages(history, image)
model_inputs = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True
)
streamer = TextIteratorStreamer(tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"input_ids": model_inputs["input_ids"].to(model.device),
"attention_mask": model_inputs["attention_mask"].to(model.device),
"streamer": streamer,
"max_new_tokens": max_length,
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"repetition_penalty": 1.2,
"eos_token_id": [59246, 59253, 59255],
}
if image and isinstance(pixel_values, torch.Tensor):
generate_kwargs['pixel_values'] = pixel_values
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
for new_token in streamer:
if new_token:
history[-1][1] += new_token
yield history
def main():
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">GLM-Edge-v Gradio Demo</h1>""")
# Top row: Chatbot and Image upload
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot()
with gr.Column(scale=1):
image_input = gr.Image(label="Upload an Image", type="filepath")
# Bottom row: System prompt, user input, and controls
with gr.Row():
with gr.Column(scale=2):
user_input = gr.Textbox(show_label=True, placeholder="Input...", label="User Input")
submitBtn = gr.Button("Submit")
emptyBtn = gr.Button("Clear History")
with gr.Column(scale=1):
max_length = gr.Slider(0, 8192, value=4096, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
# Define functions for button actions
def user(query, history):
return "", history + [[query, ""]]
# Button actions and callbacks
submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
predict, [chatbot, max_length, top_p, temperature, image_input], chatbot
)
emptyBtn.click(lambda: (None, None), None, [chatbot], queue=False)
demo.queue()
demo.launch()
if __name__ == "__main__":
main()