File size: 7,210 Bytes
977fb98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import subprocess
import gradio as gr
import torch
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
)
import docx
import PyPDF2

def convert_to_txt(file):
    doc_type = file.split(".")[-1].strip()
    if doc_type in ["txt", "md", "py"]:
        data = [file.read().decode('utf-8')]   
    elif doc_type in ["pdf"]:
        pdf_reader = PyPDF2.PdfReader(file)
        data = [pdf_reader.pages[i].extract_text() for i in range(len(pdf_reader.pages))]  
    elif doc_type in ["docx"]:
        doc = docx.Document(file)
        data = [p.text for p in doc.paragraphs]
    else:
        raise gr.Error(f"ERROR: unsupported document type: {doc_type}")
    text = "\n\n".join(data)
    return text

model_name = "THUDM/LongCite-glm4-9b"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map='auto')

html_styles = """<style>
    .reference {
        color: blue;
        text-decoration: underline;
    }
    .highlight {
        background-color: yellow;
    }
    .label {
        font-family: sans-serif;
        font-size: 16px;
        font-weight: bold;
    }
    .Bold {
        font-weight: bold;
    }
    .statement {
        background-color: lightgrey;
    }
</style>\n"""

def process_text(text):
    special_char={
        '&': '&amp;',
        '\'': '&apos;',
        '"': '&quot;',
        '<': '&lt;',
        '>': '&gt;',
        '\n': '<br>',
    }
    for x, y in special_char.items():
        text = text.replace(x, y)
    return text

def convert_to_html(statements, clicked=-1):
    html = html_styles + '<br><span class="label">Answer:</span><br>\n'
    all_cite_html = []
    clicked_cite_html = None
    cite_num2idx = {}
    idx = 0
    for i, js in enumerate(statements):
        statement, citations = process_text(js['statement']), js['citation']
        if clicked == i:
            html += f"""<span class="statement">{statement}</span>"""
        else:
            html += f"<span>{statement}</span>"
        if citations:
            cite_html = []
            idxs = []
            for c in citations:
                idx += 1
                idxs.append(str(idx))
                cite = '[Sentence: {}-{}\t|\tChar: {}-{}]<br>\n<span {}>{}</span>'.format(c['start_sentence_idx'], c['end_sentence_idx'], c['start_char_idx'], c['end_char_idx'],  'class="highlight"' if clicked==i else "", process_text(c['cite'].strip()))
                cite_html.append(f"""<span><span class="Bold">Snippet [{idx}]:</span><br>{cite}</span>""")
            all_cite_html.extend(cite_html)
            cite_num = '[{}]'.format(','.join(idxs))
            cite_num2idx[cite_num] = i
            cite_num_html = """ <span class="reference" style="color: blue" id={}>{}</span>""".format(i, cite_num)
            html += cite_num_html
        html += '\n'
        if clicked == i:
            clicked_cite_html = html_styles + """<br><span class="label">Citations of current statement:</span><br><div style="overflow-y: auto; padding: 20px; border: 0px dashed black; border-radius: 6px; background-color: #EFF2F6;">{}</div>""".format("<br><br>\n".join(cite_html))
    all_cite_html = html_styles + """<br><span class="label">All citations:</span><br>\n<div style="overflow-y: auto; padding: 20px; border: 0px dashed black; border-radius: 6px; background-color: #EFF2F6;">{}</div>""".format("<br><br>\n".join(all_cite_html).replace('<span class="highlight">', '<span>') if len(all_cite_html) else "No citation in the answer")
    return html, all_cite_html, clicked_cite_html, cite_num2idx

def render_context(file):
    if hasattr(file, "name"):
        context = convert_to_txt(file.name)
        return gr.Textbox(context, visible=True)
    else:
        raise gr.Error(f"ERROR: no uploaded document")

def run_llm(context, query):
    if not context:
        raise gr.Error("Error: no uploaded document")
    if not query:
        raise gr.Error("Error: no query")
    result = model.query_longcite(context, query, tokenizer=tokenizer, max_input_length=128000, max_new_tokens=1024)
    all_statements = result['all_statements']
    answer_html, all_cite_html, clicked_cite_html, cite_num2idx_dict = convert_to_html(all_statements)
    cite_nums = list(cite_num2idx_dict.keys())
    return {
        statements: gr.JSON(all_statements),
        answer: gr.HTML(answer_html, visible=True),
        all_citations: gr.HTML(all_cite_html, visible=True),
        cite_num2idx: gr.JSON(cite_num2idx_dict),
        citation_choices: gr.Radio(cite_nums, visible=len(cite_nums)>0),
        clicked_citations: gr.HTML(visible=False),
    }
    
def chose_citation(statements, cite_num2idx, clicked_cite_num):
    clicked = cite_num2idx[clicked_cite_num]
    answer_html, _, clicked_cite_html, _ = convert_to_html(statements, clicked=clicked)
    return {
        answer: gr.HTML(answer_html, visible=True),
        clicked_citations: gr.HTML(clicked_cite_html, visible=True),
    }

with gr.Blocks() as demo:
    gr.Markdown(
        """
        <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
            LongCite-glm4-9b Huggingface Space🤗
        </div>
        <div style="text-align: center;">
            <a href="https://huggingface.co/THUDM/LongCite-glm4-9b">🤗 Model Hub</a> |
            <a href="https://github.com/THUDM/LongCite">🌐 Github</a> |
            <a href="https://arxiv.org/pdf/">📜 arxiv </a>
        </div>
        <br>
        <div style="text-align: center; font-size: 15px; font-weight: bold; margin-bottom: 20px; line-height: 1.5;">
        If you plan to use it long-term, please consider deploying the model or forking this space yourself.
        </div>  
        """
    )
    
    with gr.Row():
        with gr.Column(scale=4):
            file = gr.File(label="Upload a document (supported type: pdf, docx, txt, md, py)")
            query = gr.Textbox(label='Question')
            submit_btn = gr.Button("Submit")

        with gr.Column(scale=4): 
            context = gr.Textbox(label="Document content", autoscroll=False, placeholder="No uploaded document.", max_lines=10, visible=False)
            
            file.upload(render_context, [file], [context])
    
    with gr.Row():
        with gr.Column(scale=4):
            statements = gr.JSON(label="statements", visible=False)
            answer = gr.HTML(label="Answer", visible=True)
            cite_num2idx = gr.JSON(label="cite_num2idx", visible=False)
            citation_choices = gr.Radio(label="Chose citations for details", visible=False, interactive=True)
            
        with gr.Column(scale=4): 
            clicked_citations = gr.HTML(label="Citations of the chosen statement", visible=False)
            all_citations = gr.HTML(label="All citations", visible=False)
            
    submit_btn.click(run_llm, [context, query], [statements, answer, all_citations, cite_num2idx, citation_choices, clicked_citations])       
    citation_choices.change(chose_citation, [statements, cite_num2idx, citation_choices], [answer, clicked_citations])
    
demo.queue()
demo.launch()