File size: 13,519 Bytes
2e8cf5f
c496671
9285448
 
 
b9d2790
c496671
2e8cf5f
6a6c565
9285448
2e8cf5f
 
c496671
2e8cf5f
c496671
 
2e8cf5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c496671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e8cf5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78a5545
2e8cf5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6c565
 
 
 
 
2e8cf5f
 
 
6a6c565
2e8cf5f
 
 
 
 
 
 
 
 
 
c496671
9285448
 
 
 
 
 
 
 
 
 
 
 
 
c496671
9285448
2e8cf5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9d2790
 
c496671
6a6c565
 
2e8cf5f
6a6c565
2e8cf5f
 
b9d2790
2e8cf5f
 
 
 
 
 
6a6c565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c496671
2e8cf5f
6a6c565
 
2e8cf5f
 
 
 
 
 
c496671
2e8cf5f
 
 
c496671
2e8cf5f
 
 
 
 
 
 
 
 
 
 
 
 
4ebfd89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import tempfile
import threading
import time

import gradio as gr
import numpy as np
import torch
from diffusers import CogVideoXPipeline
from datetime import datetime, timedelta
from openai import OpenAI
import spaces
import imageio
import moviepy.editor as mp
from typing import List, Union
import PIL

dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=dtype).to(device)

sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.

For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive.
There are a few rules to follow:

You will only ever output a single video description per user request.

When modifications are requested , you should not simply make the description longer . You should refactor the entire description to integrate the suggestions.
Other times the user will not want modifications , but instead want a new image . In this case , you should ignore your previous conversation with the user.

Video descriptions must have the same num of words as examples below. Extra words will be ignored.
"""


def export_to_video_imageio(
        video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
) -> str:
    """
    Export the video frames to a video file using imageio lib to Avoid "green screen" issue (for example CogVideoX)
    """
    if output_video_path is None:
        output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name

    if isinstance(video_frames[0], PIL.Image.Image):
        video_frames = [np.array(frame) for frame in video_frames]

    with imageio.get_writer(output_video_path, fps=fps) as writer:
        for frame in video_frames:
            writer.append_data(frame)

    return output_video_path


def convert_prompt(prompt: str, retry_times: int = 3) -> str:
    if not os.environ.get("OPENAI_API_KEY"):
        return prompt
    client = OpenAI()
    text = prompt.strip()

    for i in range(retry_times):
        response = client.chat.completions.create(
            messages=[
                {"role": "system", "content": sys_prompt},
                {"role": "user",
                 "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "a girl is on the beach"'},
                {"role": "assistant",
                 "content": "A radiant woman stands on a deserted beach, arms outstretched, wearing a beige trench coat, white blouse, light blue jeans, and chic boots, against a backdrop of soft sky and sea. Moments later, she is seen mid-twirl, arms exuberant, with the lighting suggesting dawn or dusk. Then, she runs along the beach, her attire complemented by an off-white scarf and black ankle boots, the tranquil sea behind her. Finally, she holds a paper airplane, her pose reflecting joy and freedom, with the ocean's gentle waves and the sky's soft pastel hues enhancing the serene ambiance."},
                {"role": "user",
                 "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "A man jogging on a football field"'},
                {"role": "assistant",
                 "content": "A determined man in athletic attire, including a blue long-sleeve shirt, black shorts, and blue socks, jogs around a snow-covered soccer field, showcasing his solitary exercise in a quiet, overcast setting. His long dreadlocks, focused expression, and the serene winter backdrop highlight his dedication to fitness. As he moves, his attire, consisting of a blue sports sweatshirt, black athletic pants, gloves, and sneakers, grips the snowy ground. He is seen running past a chain-link fence enclosing the playground area, with a basketball hoop and children's slide, suggesting a moment of solitary exercise amidst the empty field."},
                {"role": "user",
                 "content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " A woman is dancing, HD footage, close-up"'},
                {"role": "assistant",
                 "content": "A young woman with her hair in an updo and wearing a teal hoodie stands against a light backdrop, initially looking over her shoulder with a contemplative expression. She then confidently makes a subtle dance move, suggesting rhythm and movement. Next, she appears poised and focused, looking directly at the camera. Her expression shifts to one of introspection as she gazes downward slightly. Finally, she dances with confidence, her left hand over her heart, symbolizing a poignant moment, all while dressed in the same teal hoodie against a plain, light-colored background."},
                {"role": "user",
                 "content": f'Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: "{text}"'},
            ],
            model="glm-4-0520",
            temperature=0.01,
            top_p=0.7,
            stream=False,
            max_tokens=250,
        )
        if response.choices:
            return response.choices[0].message.content
    return prompt


@spaces.GPU(duration=240)
def infer(
        prompt: str,
        num_inference_steps: int,
        guidance_scale: float,
        progress=gr.Progress(track_tqdm=True)
):
    torch.cuda.empty_cache()

    prompt_embeds, _ = pipe.encode_prompt(
        prompt=prompt,
        negative_prompt=None,
        do_classifier_free_guidance=True,
        num_videos_per_prompt=1,
        max_sequence_length=226,
        device=device,
        dtype=dtype,
    )

    video = pipe(
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        prompt_embeds=prompt_embeds,
        negative_prompt_embeds=torch.zeros_like(prompt_embeds),
    ).frames[0]


    return video


def save_video(tensor):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    video_path = f"./output/{timestamp}.mp4"
    os.makedirs(os.path.dirname(video_path), exist_ok=True)
    export_to_video_imageio(tensor[1:], video_path)
    return video_path

def convert_to_gif(video_path):
    clip = mp.VideoFileClip(video_path)
    clip = clip.set_fps(8)
    clip = clip.resize(height=240)
    gif_path = video_path.replace('.mp4', '.gif')
    clip.write_gif(gif_path, fps=8)
    return gif_path


def delete_old_files():
    while True:
        now = datetime.now()
        cutoff = now - timedelta(minutes=10)
        output_dir = './output'
        for filename in os.listdir(output_dir):
            file_path = os.path.join(output_dir, filename)
            if os.path.isfile(file_path):
                file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
                if file_mtime < cutoff:
                    os.remove(file_path)
        time.sleep(600)  # Sleep for 10 minutes


threading.Thread(target=delete_old_files, daemon=True).start()

with gr.Blocks() as demo:
    gr.Markdown("""
           <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
               CogVideoX-2B Huggingface Space🤗
           </div>
           <div style="text-align: center;">
               <a href="https://huggingface.co/THUDM/CogVideoX-2b">🤗 Model Hub</a> |
               <a href="https://github.com/THUDM/CogVideo">🌐 Github</a> 
           </div>

           <div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
            ⚠️ This demo is for academic research and experiential use only. 
            Users should strictly adhere to local laws and ethics.
            </div>
           """)
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
            with gr.Row():
                gr.Markdown(
                    "✨Upon pressing the enhanced prompt button, we will use [GLM-4 Model](https://github.com/THUDM/GLM-4) to polish the prompt and overwrite the original one.")
                enhance_button = gr.Button("✨ Enhance Prompt(Optional)")

            with gr.Column():
                gr.Markdown("**Optional Parameters** (default values are recommended)<br>"
                            "Turn Inference Steps larger if you want more detailed video, but it will be slower.<br>"
                            "50 steps are recommended for most cases. will cause 120 seconds for inference.<br>")
                with gr.Row():
                    num_inference_steps = gr.Number(label="Inference Steps", value=50)
                    guidance_scale = gr.Number(label="Guidance Scale", value=6.0)
                generate_button = gr.Button("🎬 Generate Video")

        with gr.Column():
            video_output = gr.Video(label="CogVideoX Generate Video", width=720, height=480)
            with gr.Row():
                download_video_button = gr.File(label="📥 Download Video", visible=False)
                download_gif_button = gr.File(label="📥 Download GIF", visible=False)

    gr.Markdown("""
        <table border="1" style="width: 100%; text-align: left; margin-top: 20px;">
            <tr>
                <th>Prompt</th>
                <th>Video URL</th>
                <th>Inference Steps</th>
                <th>Guidance Scale</th>
            </tr>
            <tr>
                <td>A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.</td>
                <td><a href="https://github.com/THUDM/CogVideo/raw/main/resources/videos/1.mp4">Video 1</a></td>
                <td>50</td>
                <td>6</td>
            </tr>
            <tr>
                <td>The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from it’s tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen from the rear following the curve with ease, making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by steep hills and mountains, with a clear blue sky above with wispy clouds.</td>
                <td><a href="https://github.com/THUDM/CogVideo/raw/main/resources/videos/2.mp4">Video 2</a></td>
                <td>50</td>
                <td>6</td>
            </tr>
            <tr>
                <td>A street artist, clad in a worn-out denim jacket and a colorful bandana, stands before a vast concrete wall in the heart, holding a can of spray paint, spray-painting a colorful bird on a mottled wall.</td>
                <td><a href="https://github.com/THUDM/CogVideo/raw/main/resources/videos/3.mp4">Video 3</a></td>
                <td>50</td>
                <td>6</td>
            </tr>
            <tr>
                <td>In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has lost its innocence to the ravages of conflict.</td>
                <td><a href="https://github.com/THUDM/CogVideo/raw/main/resources/videos/4.mp4">Video 4</a></td>
                <td>50</td>
                <td>6</td>
            </tr>
        </table>
    """)


    def generate(prompt, num_inference_steps, guidance_scale, progress=gr.Progress(track_tqdm=True)):
        tensor = infer(prompt, num_inference_steps, guidance_scale, progress=progress)
        video_path = save_video(tensor)
        video_update = gr.update(visible=True, value=video_path)
        gif_path = convert_to_gif(video_path)
        gif_update = gr.update(visible=True, value=gif_path)

        return video_path, video_update, gif_update


    def enhance_prompt_func(prompt):
        return convert_prompt(prompt, retry_times=1)


    generate_button.click(
        generate,
        inputs=[prompt, num_inference_steps, guidance_scale],
        outputs=[video_output, download_video_button, download_gif_button]
    )

    enhance_button.click(
        enhance_prompt_func,
        inputs=[prompt],
        outputs=[prompt]
    )

if __name__ == "__main__":
    demo.launch()