File size: 11,151 Bytes
935b23c
 
 
 
 
f08695f
 
 
 
935b23c
 
 
 
 
 
 
 
 
 
 
 
f08695f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
935b23c
 
 
 
 
 
 
 
 
 
 
f08695f
 
 
 
 
 
 
 
935b23c
f08695f
 
 
 
 
 
 
 
 
 
935b23c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os

import gradio as gr
import torch
from PIL import Image
import io
import base64
import requests
import json

images_in_gallery = []
rewards_in_gallery = []

def generate_images(
    prompt, magic_words, num, height, width, num_inference_steps, guidance_scale
):
    global images_in_gallery, rewards_in_gallery

    if magic_words is not None:
        prompt += ", ".join(magic_words)

    # post 请求发送到服务器

    # 定义请求的 URL 和数据
    url = 'https://tianqi.aminer.cn/image_reward_hf/generate_image'
    data = {'prompt': prompt, 
            'height': height, 
            'width':width, 
            'num_inference_steps':num_inference_steps,
            'guidance_scale':guidance_scale,
            'num':num
            }
    headers = {'Content-Type': 'application/json'}

    # 发送 POST 请求
    data = json.dumps(data)
    response = requests.post(url, data=data, headers=headers)
    image_ls = response.json()['image_list']
    
    images_in_gallery = []
    for base_image in image_ls:
        image_bytes = base64.b64decode(base_image)
        # 创建 BytesIO 对象并读取图像字节流
        image_stream = io.BytesIO(image_bytes)
        # 打开图像
        image = Image.open(image_stream)
        images_in_gallery.append(image)

    rewards_in_gallery = [None] * len(images_in_gallery)
    return list(zip(images_in_gallery, rewards_in_gallery))


def score_and_rank(prompt):
    global rewards_in_gallery, images_in_gallery

    num_not_scored = rewards_in_gallery.count(None)

    if num_not_scored > 0:
        images_to_score = images_in_gallery[-num_not_scored:]
        image_ls = []
        for image in images_to_score:
            image_bytes = io.BytesIO()
            image.save(image_bytes, format='JPEG')
            image_bytes.seek(0)
            # 将字节流转换为 Base64 编码
            base64_image = base64.b64encode(image_bytes.read()).decode('utf-8')
            image_ls.append(base64_image)
        with torch.no_grad():
            # post 请求发送到服务器
            url = 'https://tianqi.aminer.cn/image_reward_hf/score_and_rank'
            data = {'images_to_score': image_ls, 'prompt':prompt}
            data = json.dumps(data)
            headers = {'Content-Type': 'application/json'}

            # 发送 POST 请求
            response = requests.post(url, data=data, headers=headers)
            rewards = response.json()['rewards']
            
        if not isinstance(rewards, list):
            rewards = [rewards]
        rewards_in_gallery = rewards_in_gallery[:-num_not_scored] + rewards

        outputs = sorted(
            zip(images_in_gallery, rewards_in_gallery), key=lambda x: x[1], reverse=True
        )

        images_in_gallery = [image for image, _ in outputs]
        rewards_in_gallery = [reward for _, reward in outputs]

        return outputs, [
            [idx + 1, reward] for idx, reward in enumerate(rewards_in_gallery)
        ]
    else:
        return list(zip(images_in_gallery, rewards_in_gallery)), [
            [idx + 1, reward] for idx, reward in enumerate(rewards_in_gallery)
        ]


def upload_images_to_gallery(uploaded_image_files):
    global images_in_gallery, rewards_in_gallery

    uploaded_image_file_paths = [file.name for file in uploaded_image_files]
    uploaded_images = [Image.open(path) for path in uploaded_image_file_paths]
    for path in uploaded_image_file_paths:
        os.remove(path)
    images_in_gallery = images_in_gallery + uploaded_images
    rewards_in_gallery = rewards_in_gallery + [None] * len(uploaded_images)

    return list(zip(images_in_gallery, rewards_in_gallery))


def clear_images():
    global images_in_gallery, rewards_in_gallery
    images_in_gallery = []
    rewards_in_gallery = []
    return None


if __name__ == "__main__":
    # UI
    with gr.Blocks(
        theme=gr.themes.Monochrome(),
        css=r".caption-label { color: black; }",
    ) as demo:
        gr.HTML(
            """
            <h1 align="center">ImageReward Demo</h1>
            <p align="center"><a href="https://github.com/THUDM/ImageReward">GitHub Repo</a> • 🤗 <a href="https://huggingface.co/THUDM/ImageReward" target="_blank">HF Repo</a> • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/abs/2304.05977" target="_blank">Paper</a><br></p>
            <br>
            <p dir="auto">ImageReward is the first general-purpose text-to-image <strong>human preference RM</strong>, which is trained on in total <strong>137k pairs of expert comparisons</strong>!</p>
            <p dir="auto">The calculation of ImageRewards is based on <strong>both the prompt and images</strong>.</p>
            """
        )
        with gr.Row():
            with gr.Column():
                gr.HTML(
                    """
                    <p dir="auto">Try ImageReward with only 2 steps:</p>
                    <ol dir="auto">
                    <li>Click the <strong>"Generate"</strong> button <strong>in the middle of the bottom</strong>.</li>
                    <li>Click the <strong>"Score&Rank"</strong> button <strong>below the gallery</strong>.</li>
                    </ol>
                    <p dir="auto">Finally, just check ImageRewards <strong>along with images or on the right of the gallery</strong>.</p>
                    <br>
                    <p dir="auto">This demo uses <code>runwayml/stable-diffusion-v1-5</code> as image generation model.</p>
                    """
                )
            with gr.Column():
                gr.HTML(
                    """
                    <p dir="auto">Besides generating images, you can also <strong>upload</strong> images to score:</p>
                    <ol dir="auto">
                    <li>Upload images <strong>in the bottom right corner</strong>.</li>
                    <li>Change the <strong>"Prompt"</strong> to correspond to the images.</li>
                    <li>Click the <strong>"Score&Rank"</strong> button <strong>below the gallery</strong>.</li>
                    </ol>
                    <br>
                    <p dir="auto">For more details about using ImageReward in your own program, check <a href="https://github.com/THUDM/ImageReward">the README.md in our Github Repo</a>.</p>
                    """
                )

        with gr.Row(elem_id="outputs_row"):
            with gr.Column(elem_id="gallery_column", scale=4):
                gallery = gr.Gallery(
                    label="Images (scored ones sorted)",
                    show_label=False,
                    elem_id="gallery",
                ).style(columns=4, object_fit="contain", full_width=True)
            with gr.Column(elem_id="rewards_column"):
                rewards = gr.Matrix(
                    value=[[None, None]],
                    headers=["Rank", "ImageReward"],
                    datatype="number",
                )
        with gr.Row():
            score_and_rank_button = gr.Button("Score&Rank")
            clear_button = gr.Button("Clear Gallery")
        with gr.Row().style(equal_height=True):
            with gr.Column():
                prompt = gr.Textbox(
                    label="Prompt",
                    value="A painting of an ocean with clouds and birds, day time, low depth field effect, oil painting, impressionism",
                )

                examples = [
                    "A painting of an ocean with clouds and birds, day time, low depth field effect, oil painting, impressionism",
                    "A painting of a girl walking in a hallway and suddenly finds a giant sunflower on the floor blocking her way",
                    "Coronation of the sun emperor, digital art, illustration,4k resolution,intricate extremely detailed, depth,vivid colors",
                    "Symmetry!! Product render poster vivid colors divine proportion owl,glowing fog intricate,elegant, highly detailed",
                    "A unicorn in a clearing.it has a single shining horn. volumetric light.by emmanuel shiu, harry potter, eragon",
                    "Highly detailed portrait of a woman with long hairs,stephen bliss. unreal engine, fantasy art by greg rutkowski",
                    "Sculpture made of flame,portrait, female,future, torch,fire,harper's bazaar,vogue, fashion magazine, intricate",
                ]
                prompt_examples = gr.Examples(
                    examples=examples,
                    label="Prompt Examples",
                    inputs=[prompt],
                    elem_id="prompt_examples",
                )

            with gr.Column():
                choices = [
                    "HDR, UHD, 4K, 8K, 64K",
                    "highly detailed",
                    "studio lighting",
                    "professional",
                    "trending on artstation",
                    "unreal engine",
                    "vivid colors",
                ]
                magic_words = gr.CheckboxGroup(
                    choices=choices,
                    value=choices,
                    type="value",
                    label="Magic Words to Append to Prompt",
                )

                num = gr.Slider(1, 16, step=1, label="Number of images", value=8)
                height = gr.Slider(256, 2048, step=256, label="Height", value=512)
                width = gr.Slider(256, 2048, step=256, label="Width", value=512)
                num_inference_steps = gr.Slider(
                    0, 200, step=10, label="Number of inference steps", value=50
                )
                guidance_scale = gr.Slider(
                    0, 25, step=0.1, label="Guidance scale", value=7.5
                )

                generate_button = gr.Button("Generate")
            with gr.Column():
                gr.Markdown(
                    """
                    - To clear all uploaded images, click the **"Clear Gallery"** button above.
                    - To clear the upload list and add additional images, click the **`x` in the upper right corner of the uploading window**.
                    - Additional images will be appended to the gallery, instead of replacing the existing ones.
                    """
                )
                uploaded_image_files = gr.File(
                    file_count="multiple",
                    file_types=["image"],
                    type="file",
                    label="Upload Images",
                    show_label=True,
                )

        generate_button.click(
            generate_images,
            [
                prompt,
                magic_words,
                num,
                height,
                width,
                num_inference_steps,
                guidance_scale,
            ],
            [gallery],
        )
        score_and_rank_button.click(score_and_rank, [prompt], [gallery, rewards])
        uploaded_image_files.upload(
            upload_images_to_gallery, [uploaded_image_files], [gallery]
        )
        clear_button.click(clear_images, None, [gallery])

    demo.launch()