zR commited on
Commit
630e57e
1 Parent(s): 9390ab5
.idea/.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # Default ignored files
2
+ /shelf/
3
+ /workspace.xml
4
+ # Editor-based HTTP Client requests
5
+ /httpRequests/
6
+ # Datasource local storage ignored files
7
+ /dataSources/
8
+ /dataSources.local.xml
.idea/LongWriter.iml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <module type="PYTHON_MODULE" version="4">
3
+ <component name="NewModuleRootManager">
4
+ <content url="file://$MODULE_DIR$" />
5
+ <orderEntry type="inheritedJdk" />
6
+ <orderEntry type="sourceFolder" forTests="false" />
7
+ </component>
8
+ </module>
.idea/inspectionProfiles/Project_Default.xml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <profile version="1.0">
3
+ <option name="myName" value="Project Default" />
4
+ <inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
5
+ <option name="ignoredPackages">
6
+ <value>
7
+ <list size="8">
8
+ <item index="0" class="java.lang.String" itemvalue="openai" />
9
+ <item index="1" class="java.lang.String" itemvalue="sse_starlette" />
10
+ <item index="2" class="java.lang.String" itemvalue="fastapi" />
11
+ <item index="3" class="java.lang.String" itemvalue="timm" />
12
+ <item index="4" class="java.lang.String" itemvalue="gradio" />
13
+ <item index="5" class="java.lang.String" itemvalue="uvicorn" />
14
+ <item index="6" class="java.lang.String" itemvalue="diffusers" />
15
+ <item index="7" class="java.lang.String" itemvalue="transformers" />
16
+ </list>
17
+ </value>
18
+ </option>
19
+ </inspection_tool>
20
+ </profile>
21
+ </component>
.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
.idea/modules.xml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectModuleManager">
4
+ <modules>
5
+ <module fileurl="file://$PROJECT_DIR$/.idea/LongWriter.iml" filepath="$PROJECT_DIR$/.idea/LongWriter.iml" />
6
+ </modules>
7
+ </component>
8
+ </project>
.idea/vcs.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="VcsDirectoryMappings">
4
+ <mapping directory="" vcs="Git" />
5
+ </component>
6
+ </project>
README.md CHANGED
@@ -4,9 +4,14 @@ emoji: 💬
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: gradio
7
- sdk_version: 4.36.1
 
8
  app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
 
 
 
 
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 4.41.1
8
+ app_port: 7860
9
  app_file: app.py
10
  pinned: false
11
  ---
12
 
13
+ # LongWriter
14
+
15
+ ```shell
16
+ python app.py
17
+ ```
app.py CHANGED
@@ -1,63 +1,116 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from threading import Thread
2
+ import spaces
3
  import gradio as gr
4
+ import torch
5
+ from transformers import (
6
+ AutoModelForCausalLM,
7
+ AutoTokenizer,
8
+ StoppingCriteria,
9
+ StoppingCriteriaList,
10
+ TextIteratorStreamer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  )
12
 
13
+ model = AutoModelForCausalLM.from_pretrained("THUDM/longwriter-glm4-9b", trust_remote_code=True, device_map='auto')
14
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/longwriter-glm4-9b", trust_remote_code=True)
15
 
16
+
17
+ class StopOnTokens(StoppingCriteria):
18
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
19
+ stop_ids = model.config.eos_token_id
20
+ for stop_id in stop_ids:
21
+ if input_ids[0][-1] == stop_id:
22
+ return True
23
+ return False
24
+
25
+
26
+ @spaces.GPU()
27
+ def predict(history, prompt, max_length, top_p, temperature):
28
+ stop = StopOnTokens()
29
+ messages = []
30
+ if prompt:
31
+ messages.append({"role": "system", "content": prompt})
32
+ for idx, (user_msg, model_msg) in enumerate(history):
33
+ if prompt and idx == 0:
34
+ continue
35
+ if idx == len(history) - 1 and not model_msg:
36
+ query = user_msg
37
+ break
38
+ if user_msg:
39
+ messages.append({"role": "user", "content": user_msg})
40
+ if model_msg:
41
+ messages.append({"role": "assistant", "content": model_msg})
42
+
43
+ model_inputs = tokenizer.build_chat_input(query, history=messages, role='user').input_ids.to(
44
+ next(model.parameters()).device)
45
+ streamer = TextIteratorStreamer(tokenizer, timeout=600, skip_prompt=True, skip_special_tokens=True)
46
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
47
+ tokenizer.get_command("<|observation|>")]
48
+ generate_kwargs = {
49
+ "input_ids": model_inputs,
50
+ "streamer": streamer,
51
+ "max_new_tokens": max_length,
52
+ "do_sample": True,
53
+ "top_p": top_p,
54
+ "temperature": temperature,
55
+ "stopping_criteria": StoppingCriteriaList([stop]),
56
+ "repetition_penalty": 1,
57
+ "eos_token_id": eos_token_id,
58
+ }
59
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
60
+ t.start()
61
+ for new_token in streamer:
62
+ if new_token == '<|user|>':
63
+ continue
64
+ elif new_token:
65
+ history[-1][1] += new_token
66
+ yield history
67
+
68
+
69
+ with gr.Blocks() as demo:
70
+ gr.Markdown(
71
+ """
72
+ <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
73
+ longwriter-glm4-9b Huggingface Space🤗
74
+ </div>
75
+ <div style="text-align: center;">
76
+ <a href="https://huggingface.co/THUDM/LongWriter-glm4-9b">🤗 Model Hub</a> |
77
+ <a href="https://github.com/THUDM/LongWriter">🌐 Github</a> |
78
+ <a href="https://arxiv.org/pdf/2408.07055">📜 arxiv </a>
79
+ </div>
80
+ """
81
+ )
82
+ chatbot = gr.Chatbot()
83
+
84
+ with gr.Row():
85
+ with gr.Column(scale=3):
86
+ with gr.Column(scale=12):
87
+ user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10, container=False)
88
+ with gr.Column(min_width=32, scale=1):
89
+ submitBtn = gr.Button("Submit")
90
+ with gr.Column(scale=1):
91
+ prompt_input = gr.Textbox(show_label=False, placeholder="Prompt", lines=10, container=False)
92
+ pBtn = gr.Button("Set Prompt")
93
+ with gr.Column(scale=1):
94
+ emptyBtn = gr.Button("Clear History")
95
+ max_length = gr.Slider(0, 10000000, value=10000, step=1.0, label="Maximum length", interactive=True)
96
+ top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
97
+ temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
98
+
99
+
100
+ def user(query, history):
101
+ return "", history + [[query, ""]]
102
+
103
+
104
+ def set_prompt(prompt_text):
105
+ return [[prompt_text, "Set prompt successfully"]]
106
+
107
+
108
+ pBtn.click(set_prompt, inputs=[prompt_input], outputs=chatbot)
109
+
110
+ submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
111
+ predict, [chatbot, prompt_input, max_length, top_p, temperature], chatbot
112
+ )
113
+ emptyBtn.click(lambda: (None, None), None, [chatbot, prompt_input], queue=False)
114
+
115
+ demo.queue()
116
+ demo.launch()
requirements.txt CHANGED
@@ -1 +1,11 @@
1
- huggingface_hub==0.22.2
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio==4.41.0
2
+ torch==2.2.0
3
+ transformers==4.44.0
4
+ spaces==0.29.2
5
+ accelerate==0.33.0
6
+ sentencepiece==0.2.0
7
+ huggingface-hub==0.24.5
8
+ sentencepiece==0.2.0
9
+ jinja2==3.1.4
10
+ sentence_transforme==3.0.1
11
+ tiktoke==0.7.0