File size: 22,603 Bytes
7f6ca6e 6a26f80 7f6ca6e cd37723 5447046 7f6ca6e a52e4dc 5c4f7bb a52e4dc 6a26f80 496eb7b 221547a 6a26f80 4b6b54f 6a26f80 a52e4dc ed0637e 335ee08 3d68f4c 335ee08 3d68f4c 335ee08 3415404 c178741 ca3e812 c178741 c8d8fbe 1f0ed0b c8d8fbe b91860a 9a958c5 1f0ed0b b91860a ed0637e a52e4dc 9348641 da31ad5 a52e4dc 5a79da8 a52e4dc 000fbcd 193e99f 000fbcd 6280ba1 a52e4dc 9f4f414 193e99f 03d0a26 9f4f414 193e99f 9f4f414 193e99f 9348641 9f4f414 9348641 9f4f414 9348641 096eb0c 193e99f 1d69722 a52e4dc b2f3985 53464fb 9f4f414 9c1c5a0 221547a a52e4dc c8d8fbe 58a6cbb c8d8fbe 58a6cbb c8d8fbe a52e4dc 9a263a1 000fbcd 6280ba1 a52e4dc ad21e8b a52e4dc 5cd297d 221547a ad21e8b 83caa2d cd37723 9348641 5f37ab9 9348641 a52e4dc ca3e812 03d0a26 ca3e812 a52e4dc 167bc7e f51ed55 167bc7e a52e4dc dd22ea9 b781bf5 167bc7e b781bf5 dd22ea9 167bc7e a52e4dc 167bc7e b781bf5 dd22ea9 167bc7e a52e4dc 167bc7e b781bf5 dd22ea9 167bc7e a52e4dc 167bc7e b781bf5 dd22ea9 167bc7e a52e4dc b781bf5 a52e4dc 167bc7e 496eb7b a52e4dc 496eb7b a52e4dc 496eb7b a52e4dc 496eb7b a52e4dc 496eb7b 167bc7e ad0e011 b781bf5 4db5d9d b781bf5 4db5d9d 88915d0 1119a17 71bd20c 88915d0 71bd20c 221547a 71bd20c 88915d0 5447046 932ed5c 5447046 ed65812 a52e4dc 9a263a1 a52e4dc 1fcc3f5 3d68f4c a52e4dc b0e4c3b 932ed5c b0e4c3b a52e4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import streamlit as st
from streamlit_option_menu import option_menu
import pandas as pd
from datetime import datetime
import pytz
import time
# 设置页面标题和大标题
st.set_page_config(page_title="AEOLLM", page_icon="👋", layout="wide")
st.title("NTCIR-18 Automatic Evaluation of LLMs (AEOLLM) Task")
# 在侧边栏创建导航菜单
with st.sidebar:
page = option_menu(
"Navigation",
["LeaderBoard", "Introduction", "Methodology", "Datasets", "Important Dates",
"Evaluation Metrics", "Submit", "Organisers", "References"],
icons=['trophy', 'house', 'book', 'database', 'calendar', 'clipboard', 'upload', 'people', 'book'],
menu_icon="cast",
default_index=0,
styles={
"container": {"padding": "5px"},
"icon": {"color": "orange", "font-size": "18px"},
"nav-link": {"font-size": "16px", "text-align": "left", "margin":"0px", "--hover-color": "#6c757d"},
"nav-link-selected": {"background-color": "#FF6347"},
}
)
st.markdown("""
<style>
.dataframe th {
min-width: 100px;
}
.dataframe td {
min-width: 100px;
}
/* 应用到所有的Markdown渲染文本 */
div[data-testid="stMarkdownContainer"] p,
div[data-testid="stMarkdownContainer"] table,
div[data-testid="stMarkdownContainer"] li {
font-size: 24px;
font-family: 'Times New Roman', serif;
line-height: 1.6;
}
.main-text {
font-size: 24px;
font-family: 'Times New Roman', serif;
line-height: 1.6;
}
</style>
""", unsafe_allow_html=True)
# 根据选择的页面展示不同的内容
if page == "Introduction":
st.header("Introduction")
st.markdown("""
<p class='main-text'>The Automatic Evaluation of LLMs (AEOLLM) task is a new core task in <a href="http://research.nii.ac.jp/ntcir/ntcir-18">NTCIR-18</a> to support in-depth research on large language models (LLMs) evaluation.
<br />🔍 As LLMs grow popular in both fields of academia and industry, how to effectively evaluate the capacity of LLMs becomes an increasingly critical but still challenging issue.
<br />⚖️ Existing methods can be divided into two types: manual evaluation, which is expensive, and automatic evaluation, which faces many limitations including the task format (the majority belong to multiple-choice questions) and evaluation criteria (occupied by reference-based metrics).
<br />💡 To advance the innovation of automatic evaluation, we proposed the Automatic Evaluation of LLMs (AEOLLM) task which focuses on generative tasks and encourages reference-free methods. Besides, we set up diverse subtasks such as summary generation, non-factoid question answering, text expansion, and dialogue generation to comprehensively test different methods.
<br />🚀 We believe that the AEOLLM task will facilitate the development of the LLMs community.</p>
""", unsafe_allow_html=True)
elif page == "Methodology":
st.header("Methodology")
col1, col2, col3 = st.columns([1, 3, 1])
with col2:
st.image("asserts/method.svg", use_column_width=True)
st.markdown("""
<p class='main-text'>First, we choose four subtasks as shown in the table below:</p>
<table class='main-text'>
<thead>
<tr>
<th style="text-align: left">Task</th>
<th style="text-align: left">Description</th>
<th style="text-align: left">Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: left">Summary Generation (SG)</td>
<td style="text-align: left">write a summary for the specified text</td>
<td style="text-align: left">XSum: over 226k news articles</td>
</tr>
<tr>
<td style="text-align: left">Non-Factoid QA (NFQA)</td>
<td style="text-align: left">construct long-form answers to open-ended non-factoid questions</td>
<td style="text-align: left">NF_CATS: 12k non-factoid questions</td>
</tr>
<tr>
<td style="text-align: left">Text Expansion (TE)</td>
<td style="text-align: left">given a theme, participants need to generate stories related to the theme</td>
<td style="text-align: left">WritingPrompts: 303k story themes</td>
</tr>
<tr>
<td style="text-align: left">Dialogue Generation (DG)</td>
<td style="text-align: left">generate human-like responses to numerous topics in daily conversation contexts</td>
<td style="text-align: left">DailyDialog: 13k daily conversation contexts</td>
</tr>
</tbody>
</table>
<p class='main-text'>Second, we choose a series of popular LLMs during the competition to generate answers.</p>
<p class='main-text'>Third, we manually annotate the answer sets for each question, which will be used as gold standards for evaluating the performance of different evaluation methods.</p>
<p class='main-text'>Last, we will collect evaluation results from participants and calculate consistency with manually annotated results. We will use Accuracy, Kendall’s tau and Spearman correlation coefficient as the evaluation metrics.</p>
""",unsafe_allow_html=True)
elif page == "Datasets":
st.header("Answer Generation")
st.markdown("""
We randomly sampled **100 instances** from **each** dataset as the question set and selected **7 different LLMs** to generate answers, forming the answer set.
As a result, each dataset produced 700 instances, totaling **2,800 instances across the four datasets**.
""")
st.header("Human Annotation")
st.markdown("""
- For each instance (question-answer pair), we employed human annotators to provide a score ranging from 1 to 5 and took the median of these scores as the final score.
- Based on this score, we calculated the rankings of the 7 answers for each question. If scores were identical, the answers were assigned the same rank, with the lowest rank being used.
""")
st.header("Data Acquisition and Usage")
st.markdown("""
We divided the 2,800 instances into three parts:
1️⃣ train set: 20% of the data (covering all four datasets) was designated as the training set (including human annotations) for participants to reference when designing their methods.
2️⃣ test set: Another 20% of the data was set aside as the test set (excluding human annotations), used to evaluate the performance of participants' methods and to generate the **leaderboard**.
3️⃣ reserved set: The remaining 60% of the data was reserved for **the final evaluation**.
Both the training set and the test set can be downloaded from the provided link: [https://huggingface.co/datasets/THUIR/AEOLLM](https://huggingface.co/datasets/THUIR/AEOLLM).
""")
st.header("Resources")
st.markdown("""
<p class='main-text'>A brief description of the specific dataset we used, along with the original download link, is provided below:</p>
<p class='main-text'>1. <strong>Summary Generation (SG): <a href="https://huggingface.co/datasets/EdinburghNLP/xsum">Xsum</a></strong>: A real-world single document news summary dataset collected from online articles by the British Broadcasting Corporation (BBC) and contains over 220 thousand news documents.</p>
<p class='main-text'>2. <strong>Non-Factoid QA (NFQA): <a href="https://github.com/Lurunchik/NF-CATS">NF_CATS</a></strong>: A dataset contains examples of 12k natural questions divided into eight categories.</p>
<p class='main-text'>3. <strong>Text Expansion (TE): <a href="https://huggingface.co/datasets/euclaise/writingprompts">WritingPrompts</a></strong>: A large dataset of 300K human-written stories paired with writing prompts from an online forum.</p>
<p class='main-text'>4. <strong>Dialogue Generation (DG): <a href="https://huggingface.co/datasets/daily_dialog">DailyDialog</a></strong>: A high-quality dataset of 13k multi-turn dialogues. The language is human-written and less noisy.</p>
""",unsafe_allow_html=True)
elif page == "Important Dates":
st.header("Important Dates")
st.markdown("""
<p class='main-text'>All deadlines are at 11:59pm in the Anywhere on Earth (AOE) timezone.</p>
""", unsafe_allow_html=True)
col1, col2 = st.columns(2)
with col1:
st.markdown("""
<span class='main-text'><strong>Kickoff Event</strong>:</span> <br />
<span class='main-text'><strong>Dataset Release</strong>:</span> <br />
<span class='main-text'><strong>Dry run Deadline</strong>:</span><br />
<span class='main-text'><strong>Formal run</strong>:</span> <br />
<span class='main-text'><strong>Evaluation Results Release</strong>:</span> <br />
<span class='main-text'><strong>Task overview release (draft)</strong>:</span> <br />
<span class='main-text'><strong>Submission Due of Participant Papers (draft)</strong>:</span> <br />
<span class='main-text'><strong>Camera-Ready Participant Paper Due</strong>:</span><br />
<span class='main-text'><strong>NTCIR-18 Conference</strong>:</span> <br />
""",unsafe_allow_html=True)
with col2:
st.markdown("""
<span class='main-text'>March 29, 2024</span><br />
<span class='main-text'>May 1, 2024</span><br />
<span class='main-text'>👉Jan 15, 2025</span><br />
<span class='main-text'>Jan 15, 2025 - Feb 1, 2025</span> <br />
<span class='main-text'>Feb 1, 2025</span> <br />
<span class='main-text'>Feb 1, 2025</span><br />
<span class='main-text'>March 1, 2025</span><br />
<span class='main-text'>May 1, 2025</span><br />
<span class='main-text'>Jun 10-13 2025</span><br />
""",unsafe_allow_html=True)
st.markdown("""
<p>During the Dry run (until Jan 15, 2025), we will use the <a href="https://huggingface.co/datasets/THUIR/AEOLLM">test set (https://huggingface.co/datasets/THUIR/AEOLLM)</a> to evaluate the performance of participants' methods and release the results on the Leaderboard.
<br />
Before the Formal run begins (before Jan 15, 2025), we will release the reserved set. Participants need to submit their results for the reserved set before the Formal run ends (before Feb 1, 2025).</p>
""",unsafe_allow_html=True)
elif page == "Evaluation Metrics":
st.header("Evaluation Metrics")
st.markdown("""
- **Acc(Accuracy):** The proportion of identical preference results between the model and human annotations. Specifically, we first convert individual scores (ranks) into pairwise preferences and then calculate consistency with human annotations.
- **Kendall's tau:** Measures the ordinal association between two ranked variables.
$$
\\tau=\\frac{C-D}{\\frac{1}{2}n(n-1)}
$$
where:
- $C$ is the number of concordant pairs,
- $D$ is the number of discordant pairs,
- $n$ is the number of pairs.
- **Spearman's Rank Correlation Coefficient:** Measures the strength and direction of the association between two ranked variables.
$$
\\rho = 1 - \\frac{6 \sum d_i^2}{n(n^2 - 1)}
$$
where:
- $d_i$ is the difference between the ranks of corresponding elements in the two lists,
- $n$ is the number of elements.
""",unsafe_allow_html=True)
elif page == "Data and File format":
st.header("Data and File format")
st.markdown("""
<p class='main-text'>We will be following a similar format as the ones used by most <strong>TREC submissions</strong>, which is repeated below. White space is used to separate columns. The width of the columns in the format is not important, but it is important to have exactly five columns per line with at least one space between the columns.</p>
<p class='main-text'><strong>taskId questionId answerId score rank</strong></p>
<p class='main-text'>1. the first column is the taskeId (index different tasks)</p>
<p class='main-text'>2. the second column is questionId (index different questions in the same task)</p>
<p class='main-text'>3. the third column is answerId (index the answer provided by different LLMs to the same question)</p>
<p class='main-text'>4. the fourth column is score (index the score to the answer given by participants)</p>
<p class='main-text'>5. the fifth column is rank (index the rank of the answer within all answers to the same question)</p>
""",unsafe_allow_html=True)
elif page == "Submit":
st.header("File Format")
st.markdown("""
We will be following a similar format as the ones used by most **TREC submissions**:
1. White space is used to separate columns.
2. The width of the columns in the format is not important, but it is important to have exactly five columns per line with at least one space between the columns.
**taskId questionId answerId score rank**
- the first column is the taskeId (index different tasks)
- the second column is questionId (index different questions in the same task)
- the third column is answerId (index the answer provided by different LLMs to the same question)
- the fourth column is score (index the score to the answer given by participants)
- the fifth column is rank (index the rank of the answer within all answers to the same question)
""")
st.header("Submit")
st.markdown("""
📄 Please organize the answers in a **txt** file, name the file as **teamId_methods.txt** and submit it through the link below: [https://forms.gle/vRNxBaNAfYZHMVtr5](https://forms.gle/vRNxBaNAfYZHMVtr5)
⏱️ Each team can submit up to 5 times per day, and only the latest submission will be considered.
🔗 An example of the submission file content is [here](https://huggingface.co/spaces/THUIR/AEOLLM/blob/main/baseline_example/output/baseline1_chatglm3_6B.txt).
""")
elif page == "LeaderBoard":
# # 描述
st.markdown("""
<p class='main-text'>
🏆 NTCIR-18 Automatic Evaluation Methods of LLMs (AEOLLM) task Leaderboard.
</p>
""", unsafe_allow_html=True)
df = {
"TeamId": ["baseline", "baseline", "baseline", "baseline"],
"Methods": ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o"],
"Average (all 4 datatsets)": [],
"Average (Dialogue Generation)": [],
"Accuracy (Dialogue Generation)": [],
"Kendall's Tau (Dialogue Generation)": [],
"Spearman (Dialogue Generation)": [],
"Average (Text Expansion)": [],
"Accuracy (Text Expansion)": [],
"Kendall's Tau (Text Expansion)": [],
"Spearman (Text Expansion)": [],
"Average (Summary Generation)": [],
"Accuracy (Summary Generation)": [],
"Kendall's Tau (Summary Generation)": [],
"Spearman (Summary Generation)": [],
"Average (Non-Factoid QA)": [],
"Accuracy (Non-Factoid QA)": [],
"Kendall's Tau (Non-Factoid QA)": [],
"Spearman (Non-Factoid QA)": [],
}
TeamId = ["baseline", "baseline", "baseline", "baseline", 'ISLab', 'ISLab', 'ISLab', 'ISLab']
Methods = ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o", 'gpt4o-mini-baseline', 'gpt4o-mini-baseline2', 'llama3-1-baseline', 'llama3-1-baseline2']
# teamId 唯一标识码
DG = {
"TeamId": TeamId,
"Methods": Methods,
"Accuracy": [0.5806, 0.5483, 0.6001, 0.6472, 0, 0, 0, 0],
"Kendall's Tau": [0.3243, 0.1739, 0.3042, 0.4167, 0, 0, 0, 0],
"Spearman": [0.3505, 0.1857, 0.3264, 0.4512, 0, 0, 0, 0]
}
df1 = pd.DataFrame(DG)
TE = {
"TeamId": TeamId,
"Methods": Methods,
"Accuracy": [0.5107, 0.5050, 0.5461, 0.5581, 0, 0, 0, 0],
"Kendall's Tau": [0.1281, 0.0635, 0.2716, 0.3864, 0, 0, 0, 0],
"Spearman": [0.1352, 0.0667, 0.2867, 0.4157, 0, 0, 0, 0]
}
df2 = pd.DataFrame(TE)
SG = {
"TeamId": TeamId,
"Methods": Methods,
"Accuracy": [0.6504, 0.6014, 0.7162, 0.7441, 0.7684735750360749, 0.7659274997877937, 0.7702904570919278, 0.7707237554112554],
"Kendall's Tau": [0.3957, 0.2688, 0.5092, 0.5001, 0.5139446977332496, 0.5635917219315821, 0.5789961063044075, 0.5704551232357526],
"Spearman": [0.4188, 0.2817, 0.5403, 0.5405, 0.5610788011671747, 0.6164421350125108, 0.6242002118163157, 0.6148419886082258],
}
df3 = pd.DataFrame(SG)
NFQA = {
"TeamId": TeamId,
"Methods": Methods,
"Accuracy": [0.5935, 0.5817, 0.7000, 0.7203, 0, 0, 0, 0],
"Kendall's Tau": [0.2332, 0.2389, 0.4440, 0.4235, 0, 0, 0, 0],
"Spearman": [0.2443, 0.2492, 0.4630, 0.4511, 0, 0, 0, 0]
}
df4 = pd.DataFrame(NFQA)
OverAll = {
"TeamId": TeamId,
"Methods": Methods,
"Accuracy": [],
"Kendall's Tau": [],
"Spearman": []
}
data = [DG, NFQA, SG, TE]
task = ["Dialogue Generation", "Non-Factoid QA", "Summary Generation", "Text Expansion"]
metric = ["Accuracy", "Kendall's Tau", "Spearman"]
for m in metric:
# 每个指标
metric_score = [0] * len(TeamId)
for j in range(len(TeamId)):
# 每支队伍
for d in data:
metric_score[j] += d[m][j]
metric_score = [k / len(task) for k in metric_score]
OverAll[m] = metric_score
dfo = pd.DataFrame(OverAll)
df = [df1, df2, df3, df4, dfo]
for d in df:
for col in d.select_dtypes(include=['float64', 'int64']).columns:
d[col] = d[col].apply(lambda x: f"{x:.4f}")
# # 创建标签页
# tab1, tab2, tab3, tab4 = st.tabs(["DG", "TE", "SG", "NFQA"])
# with tab1:
# st.markdown("""<p class='main-text'>Task: Dialogue Generation; Dataset: DialyDialog</p>""", unsafe_allow_html=True)
# st.dataframe(df1, use_container_width=True)
# with tab2:
# st.markdown("""<p class='main-text'>Task: Text Expansion; Dataset: WritingPrompts</p>""", unsafe_allow_html=True)
# st.dataframe(df2, use_container_width=True)
# with tab3:
# st.markdown("""<p class='main-text'>Task: Summary Generation; Dataset: Xsum</p>""", unsafe_allow_html=True)
# st.dataframe(df3, use_container_width=True)
# with tab4:
# st.markdown("""<p class='main-text'>Task: Non-Factoid QA; Dataset: NF_CATS</p>""", unsafe_allow_html=True)
# st.dataframe(df4, use_container_width=True)
st.markdown("""<p class='main-text'>Overall: The average across all four tasks</p>""", unsafe_allow_html=True)
st.dataframe(dfo, use_container_width=True)
st.markdown("""<p class='main-text'>Task: Dialogue Generation; Dataset: DialyDialog</p>""", unsafe_allow_html=True)
st.dataframe(df1, use_container_width=True)
st.markdown("""<p class='main-text'>Task: Text Expansion; Dataset: WritingPrompts</p>""", unsafe_allow_html=True)
st.dataframe(df2, use_container_width=True)
st.markdown("""<p class='main-text'>Task: Summary Generation; Dataset: Xsum</p>""", unsafe_allow_html=True)
st.dataframe(df3, use_container_width=True)
st.markdown("""<p class='main-text'>Task: Non-Factoid QA; Dataset: NF_CATS</p>""", unsafe_allow_html=True)
st.dataframe(df4, use_container_width=True)
# data = [DG, NFQA, SG, TE]
# task = ["Dialogue Generation", "Non-Factoid QA", "Summary Generation", "Text Expansion"]
# metric = ["Accuracy", "Kendall's Tau", "Spearman"]
# overall_total = [0] * len(df["TeamId"])
# for i, d in enumerate(data): # 每种数据集
# total = [0] * len(df["TeamId"]) # 长度初始化为方法数
# for j in range(len(metric)): # 每种指标
# index = f"{metric[j]} ({task[i]})"
# df[index] = d[metric[j]]
# for k in range(len(df["TeamId"])):
# total[k] += d[metric[j]][k]
# average_index = f"Average ({task[i]})"
# df[average_index] = [k / len(metric) for k in total]
# for k in range(len(df["TeamId"])):
# overall_total[k] += df[average_index][k]
# df["Average (all 4 datatsets)"] = [k / len(task) for k in overall_total]
# df = pd.DataFrame(df)
# for col in df.select_dtypes(include=['float64', 'int64']).columns:
# df[col] = df[col].apply(lambda x: f"{x:.4f}")
# st.dataframe(df,use_container_width=True)
st.markdown("""
🔗 To register for AEOLLM task, you can visit the following link and choose our AEOLLM task: [https://research.nii.ac.jp/ntcir/ntcir-18/howto.html](https://research.nii.ac.jp/ntcir/ntcir-18/howto.html).
📃 To submit, refer to the "Submit" section in the left-hand navigation bar.🤗 A baseline example can be found in the [baseline_example](https://huggingface.co/spaces/THUIR/AEOLLM/tree/main/baseline_example) folder.
📝 Refer to other sections in the navigation bar for details on evaluation metrics, datasets, important dates and methodology.
🕒 The Leaderboard will be updated daily around 24:00 Beijing Time.
""")
# 获取北京时间
time_placeholder = st.empty()
beijing_tz = pytz.timezone('Asia/Shanghai')
beijing_time = datetime.now(beijing_tz)
while True:
# 获取当前的北京时间
beijing_time = datetime.now(beijing_tz)
# 在页面上动态显示当前北京时间
time_placeholder.write("Current Beijing Time: " + beijing_time.strftime('%Y-%m-%d %H:%M:%S'))
# 设置更新频率为每秒钟一次
time.sleep(1)
elif page == "Organisers":
st.header("Organisers")
st.markdown("""
<p class='main-text'>
<em>Yiqun Liu</em> [[email protected]] (Tsinghua University)<br />
<em>Qingyao Ai</em> [[email protected]] (Tsinghua University)<br />
<em>Junjie Chen</em> [[email protected]] (Tsinghua University) <br />
<em>Zhumin Chu</em> [[email protected]] (Tsinghua University)<br />
<em>Haitao Li</em> [[email protected]] (Tsinghua University)<br />
Please feel free to contact us! 😉
</p>""",unsafe_allow_html=True)
st.image("asserts/organizer.png")
elif page == "References":
st.header("References")
st.markdown("""
<p class='main-text'>[1] Mao R, Chen G, Zhang X, et al. GPTEval: A survey on assessments of ChatGPT and GPT-4. <a href="https://arxiv.org/pdf/2308.12488">pdf</a><br />
[2] Chang Y, Wang X, Wang J, et al. A survey on evaluation of large language models. <a href="https://dl.acm.org/doi/pdf/10.1145/3641289">pdf</a><br />
[3] Chan C M, Chen W, Su Y, et al. Chateval: Towards better llm-based evaluators through multi-agent debate. <a href="https://arxiv.org/pdf/2308.07201">pdf</a><br />
[4] Li R, Patel T, Du X. Prd: Peer rank and discussion improve large language model based evaluations. <a href="https://arxiv.org/pdf/2307.02762">pdf</a><br />
[5] Chu Z, Ai Q, Tu Y, et al. Pre: A peer review based large language model evaluator. <a href="https://arxiv.org/pdf/2401.15641">pdf</a></p>
""",unsafe_allow_html=True)
|