Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
import re | |
import os | |
from decord import VideoReader, cpu | |
from PIL import Image | |
import numpy as np | |
import transformers | |
import spaces | |
from typing import Dict, Optional, Sequence, List | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
import sys | |
from oryx.conversation import conv_templates, SeparatorStyle | |
from oryx.model.builder import load_pretrained_model | |
from oryx.utils import disable_torch_init | |
from oryx.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video_genli,process_anyres_highres_image_genli | |
from oryx.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX | |
model_path = "THUdyh/Oryx-7B" | |
model_name = get_model_name_from_path(model_path) | |
overwrite_config = {} | |
overwrite_config["mm_resampler_type"] = "dynamic_compressor" | |
overwrite_config["patchify_video_feature"] = False | |
overwrite_config["attn_implementation"] = "sdpa" if torch.__version__ >= "2.1.2" else "eager" | |
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, device_map="cpu", overwrite_config=overwrite_config) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.to(device).eval() | |
cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
title_markdown = """ | |
<div style="display: flex; justify-content: left; align-items: center; text-align: left; background: linear-gradient(45deg, rgba(204,255,231, 0.8), rgba(204,255,231, 0.3)); border-radius: 10px; box-shadow: 0 8px 16px 0 rgba(0,0,0,0.1);"> <a href="https://llava-vl.github.io/blog/2024-04-30-llava-next-video/"" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;"> | |
<img src="https://oryx-mllm.github.io/static/images/icon.png" alt="Oryx" style="max-width: 80px; height: auto; border-radius: 10px;"> | |
</a> | |
<div> | |
<h2 ><a href="https://github.com/Oryx-mllm/Oryx">Oryx MLLM: On-Demand Spatial-Temporal Understanding at Arbitrary Resolution</a> </h2> | |
<h5 style="margin: 0;"><a href="https://oryx-mllm.github.io/">Project Page</a> | <a href="https://github.com/Oryx-mllm/Oryx">Github</a> | <a href="https://huggingface.co/collections/THUdyh/oryx-66ebe5d0cfb61a2837a103ff">Huggingface</a> | <a href="https://arxiv.org/abs/2409.12961">Paper</a> | <a href="https://x.com/_akhaliq/status/1836963718887866400"> Twitter </a> </h5> | |
</div> | |
</div> | |
""" | |
bibtext = """ | |
### Citation | |
``` | |
@article{liu2024oryx, | |
title={Oryx MLLM: On-Demand Spatial-Temporal Understanding at Arbitrary Resolution}, | |
author={Liu, Zuyan and Dong, Yuhao and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming}, | |
journal={arXiv preprint arXiv:2409.12961}, | |
year={2024} | |
} | |
``` | |
""" | |
def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict: | |
roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"} | |
im_start, im_end = tokenizer.additional_special_tokens_ids | |
nl_tokens = tokenizer("\n").input_ids | |
_system = tokenizer("system").input_ids + nl_tokens | |
_user = tokenizer("user").input_ids + nl_tokens | |
_assistant = tokenizer("assistant").input_ids + nl_tokens | |
# Apply prompt templates | |
input_ids, targets = [], [] | |
source = sources | |
if roles[source[0]["from"]] != roles["human"]: | |
source = source[1:] | |
input_id, target = [], [] | |
system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens | |
input_id += system | |
target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens | |
assert len(input_id) == len(target) | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
if has_image and sentence["value"] is not None and "<image>" in sentence["value"]: | |
num_image = len(re.findall(DEFAULT_IMAGE_TOKEN, sentence["value"])) | |
texts = sentence["value"].split('<image>') | |
_input_id = tokenizer(role).input_ids + nl_tokens | |
for i,text in enumerate(texts): | |
_input_id += tokenizer(text).input_ids | |
if i<len(texts)-1: | |
_input_id += [IMAGE_TOKEN_INDEX] + nl_tokens | |
_input_id += [im_end] + nl_tokens | |
assert sum([i==IMAGE_TOKEN_INDEX for i in _input_id])==num_image | |
else: | |
if sentence["value"] is None: | |
_input_id = tokenizer(role).input_ids + nl_tokens | |
else: | |
_input_id = tokenizer(role).input_ids + nl_tokens + tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens | |
input_id += _input_id | |
if role == "<|im_start|>user": | |
_target = [im_start] + [IGNORE_INDEX] * (len(_input_id) - 3) + [im_end] + nl_tokens | |
elif role == "<|im_start|>assistant": | |
_target = [im_start] + [IGNORE_INDEX] * len(tokenizer(role).input_ids) + _input_id[len(tokenizer(role).input_ids) + 1 : -2] + [im_end] + nl_tokens | |
else: | |
raise NotImplementedError | |
target += _target | |
input_ids.append(input_id) | |
targets.append(target) | |
input_ids = torch.tensor(input_ids, dtype=torch.long) | |
targets = torch.tensor(targets, dtype=torch.long) | |
return input_ids | |
def oryx_inference(multimodal): | |
visual, text = multimodal["files"][0], multimodal["text"] | |
if visual.endswith("case/image2.png"): | |
modality = "video" | |
visual = f"{cur_dir}/case/case1.mp4" | |
if visual.endswith(".mp4"): | |
modality = "video" | |
else: | |
modality = "image" | |
if modality == "video": | |
vr = VideoReader(visual, ctx=cpu(0)) | |
total_frame_num = len(vr) | |
fps = round(vr.get_avg_fps()) | |
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int) | |
frame_idx = uniform_sampled_frames.tolist() | |
spare_frames = vr.get_batch(frame_idx).asnumpy() | |
video = [Image.fromarray(frame) for frame in spare_frames] | |
else: | |
image = [Image.open(visual)] | |
image_sizes = [image[0].size] | |
conv_mode = "qwen_1_5" | |
question = text | |
question = "<image>\n" + question | |
conv = conv_templates[conv_mode].copy() | |
conv.append_message(conv.roles[0], question) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_ids = preprocess_qwen([{'from': 'human','value': question},{'from': 'gpt','value': None}], tokenizer, has_image=True).to(device) | |
if modality == "video": | |
video_processed = [] | |
for idx, frame in enumerate(video): | |
image_processor.do_resize = False | |
image_processor.do_center_crop = False | |
frame = process_anyres_video_genli(frame, image_processor) | |
if frame_idx is not None and idx in frame_idx: | |
video_processed.append(frame.unsqueeze(0)) | |
elif frame_idx is None: | |
video_processed.append(frame.unsqueeze(0)) | |
if frame_idx is None: | |
frame_idx = np.arange(0, len(video_processed), dtype=int).tolist() | |
video_processed = torch.cat(video_processed, dim=0).bfloat16().to(device) | |
video_processed = (video_processed, video_processed) | |
video_data = (video_processed, (384, 384), "video") | |
else: | |
image_processor.do_resize = False | |
image_processor.do_center_crop = False | |
image_tensor, image_highres_tensor = [], [] | |
for visual in image: | |
image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, image_processor) | |
image_tensor.append(image_tensor_) | |
image_highres_tensor.append(image_highres_tensor_) | |
if all(x.shape == image_tensor[0].shape for x in image_tensor): | |
image_tensor = torch.stack(image_tensor, dim=0) | |
if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor): | |
image_highres_tensor = torch.stack(image_highres_tensor, dim=0) | |
if type(image_tensor) is list: | |
image_tensor = [_image.bfloat16().to(device) for _image in image_tensor] | |
else: | |
image_tensor = image_tensor.bfloat16().to(device) | |
if type(image_highres_tensor) is list: | |
image_highres_tensor = [_image.bfloat16().to(device) for _image in image_highres_tensor] | |
else: | |
image_highres_tensor = image_highres_tensor.bfloat16().to(device) | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
keywords = [stop_str] | |
with torch.inference_mode(): | |
if modality == "video": | |
output_ids = model.generate( | |
inputs=input_ids, | |
images=video_data[0][0], | |
images_highres=video_data[0][1], | |
modalities=video_data[2], | |
do_sample=False, | |
temperature=0, | |
max_new_tokens=1024, | |
use_cache=True, | |
) | |
else: | |
output_ids = model.generate( | |
inputs=input_ids, | |
images=image_tensor, | |
images_highres=image_highres_tensor, | |
image_sizes=image_sizes, | |
modalities=['image'], | |
do_sample=False, | |
temperature=0, | |
max_new_tokens=1024, | |
use_cache=True, | |
) | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] | |
outputs = outputs.strip() | |
if outputs.endswith(stop_str): | |
outputs = outputs[:-len(stop_str)] | |
outputs = outputs.strip() | |
return outputs | |
# Define input and output for the Gradio interface | |
demo = gr.Interface( | |
fn=oryx_inference, | |
inputs=gr.MultimodalTextbox(file_types=[".mp4", "image"],placeholder="Enter message or upload file..."), | |
outputs="text", | |
examples=[ | |
{ | |
"files":[f"{cur_dir}/case/image2.png"], | |
"text":"Describe what is happening in this video in detail.", | |
}, | |
{ | |
"files":[f"{cur_dir}/case/image.png"], | |
"text":"Describe this icon.", | |
}, | |
], | |
title="Oryx-7B Demo", | |
description=title_markdown, | |
article=bibtext, | |
) | |
# Launch the Gradio app | |
demo.launch() | |