AnyV2V / i2vgen-xl /run_group_pnp_edit.py
vinesmsuic's picture
init
26853cd
raw
history blame
9.3 kB
import os
import sys
from pathlib import Path
import torch
import argparse
import logging
from omegaconf import OmegaConf
from PIL import Image
import json
# HF imports
from diffusers import (
DDIMInverseScheduler,
DDIMScheduler,
)
from diffusers.utils import load_image, export_to_video, export_to_gif
# Project imports
from utils import (
seed_everything,
load_video_frames,
convert_video_to_frames,
load_ddim_latents_at_T,
load_ddim_latents_at_t,
)
from pipelines.pipeline_i2vgen_xl import I2VGenXLPipeline
from pnp_utils import (
register_time,
register_conv_injection,
register_spatial_attention_pnp,
register_temp_attention_pnp,
)
def init_pnp(pipe, scheduler, config):
conv_injection_t = int(config.n_steps * config.pnp_f_t)
spatial_attn_qk_injection_t = int(config.n_steps * config.pnp_spatial_attn_t)
temp_attn_qk_injection_t = int(config.n_steps * config.pnp_temp_attn_t)
conv_injection_timesteps = scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
spatial_attn_qk_injection_timesteps = (
scheduler.timesteps[:spatial_attn_qk_injection_t] if spatial_attn_qk_injection_t >= 0 else []
)
temp_attn_qk_injection_timesteps = (
scheduler.timesteps[:temp_attn_qk_injection_t] if temp_attn_qk_injection_t >= 0 else []
)
register_conv_injection(pipe, conv_injection_timesteps)
register_spatial_attention_pnp(pipe, spatial_attn_qk_injection_timesteps)
register_temp_attention_pnp(pipe, temp_attn_qk_injection_timesteps)
logger = logging.getLogger(__name__)
logger.debug(f"conv_injection_t: {conv_injection_t}")
logger.debug(f"spatial_attn_qk_injection_t: {spatial_attn_qk_injection_t}")
logger.debug(f"temp_attn_qk_injection_t: {temp_attn_qk_injection_t}")
logger.debug(f"conv_injection_timesteps: {conv_injection_timesteps}")
logger.debug(f"spatial_attn_qk_injection_timesteps: {spatial_attn_qk_injection_timesteps}")
logger.debug(f"temp_attn_qk_injection_timesteps: {temp_attn_qk_injection_timesteps}")
def main(template_config, configs_list):
# Initialize the pipeline
pipe = I2VGenXLPipeline.from_pretrained(
"ali-vilab/i2vgen-xl",
torch_dtype=torch.float16,
variant="fp16",
)
pipe.to(device)
# Initialize the DDIM scheduler
ddim_scheduler = DDIMScheduler.from_pretrained(
"ali-vilab/i2vgen-xl",
subfolder="scheduler",
)
for config_entry in configs_list:
if config_entry["active"] == False:
logger.info(f"Skipping config_entry: {config_entry}")
continue
logger.info(f"Processing config_entry: {config_entry}")
# Override the config with the data_meta_entry
config = OmegaConf.merge(template_config, OmegaConf.create(config_entry))
# Update the related paths to absolute paths
config.video_path = os.path.join(config.video_dir, config.video_name + ".mp4")
config.video_frames_path = os.path.join(config.video_dir, config.video_name)
config.edited_first_frame_path = os.path.join(config.data_dir, config.edited_first_frame_path)
logger.info(f"config: {OmegaConf.to_yaml(config)}")
# Check if there are fields contain "ReplaceMe"
for k, v in config.items():
if "ReplaceMe" in str(v):
logger.error(f"Field {k} contains 'ReplaceMe'")
continue
# This is the same as run_pnp_edit.py
# Load first frame and source frames
try:
logger.info(f"Loading frames from: {config.video_frames_path}")
_, frame_list = load_video_frames(config.video_frames_path, config.n_frames, config.image_size)
except:
logger.error(f"Failed to load frames from: {config.video_frames_path}")
logger.info(f"Converting mp4 video to frames: {config.video_path}")
frame_list = convert_video_to_frames(config.video_path, config.image_size, save_frames=True)
frame_list = frame_list[: config.n_frames] # 16 frames for img2vid
logger.debug(f"len(frame_list): {len(frame_list)}")
src_frame_list = frame_list
src_1st_frame = src_frame_list[0] # Is a PIL image
# Load the edited first frame
edited_1st_frame = load_image(config.edited_first_frame_path)
edited_1st_frame = edited_1st_frame.resize(config.image_size, resample=Image.Resampling.LANCZOS)
# Load the initial latents at t
ddim_init_latents_t_idx = config.ddim_init_latents_t_idx
ddim_scheduler.set_timesteps(config.n_steps)
logger.info(f"ddim_scheduler.timesteps: {ddim_scheduler.timesteps}")
ddim_latents_at_t = load_ddim_latents_at_t(
ddim_scheduler.timesteps[ddim_init_latents_t_idx], ddim_latents_path=config.ddim_latents_path
)
logger.debug(f"ddim_scheduler.timesteps[t_idx]: {ddim_scheduler.timesteps[ddim_init_latents_t_idx]}")
logger.debug(f"ddim_latents_at_t.shape: {ddim_latents_at_t.shape}")
# Blend the latents
random_latents = torch.randn_like(ddim_latents_at_t)
logger.info(f"Blending random_ratio (1 means random latent): {config.random_ratio}")
mixed_latents = random_latents * config.random_ratio + ddim_latents_at_t * (1 - config.random_ratio)
# Init Pnp
init_pnp(pipe, ddim_scheduler, config)
# Edit video
pipe.register_modules(scheduler=ddim_scheduler)
edited_video = pipe.sample_with_pnp(
prompt=config.editing_prompt,
image=edited_1st_frame,
height=config.image_size[1],
width=config.image_size[0],
num_frames=config.n_frames,
num_inference_steps=config.n_steps,
guidance_scale=config.cfg,
negative_prompt=config.editing_negative_prompt,
target_fps=config.target_fps,
latents=mixed_latents,
generator=torch.manual_seed(config.seed),
return_dict=True,
ddim_init_latents_t_idx=ddim_init_latents_t_idx,
ddim_inv_latents_path=config.ddim_latents_path,
ddim_inv_prompt=config.ddim_inv_prompt,
ddim_inv_1st_frame=src_1st_frame,
).frames[0]
# Save video
# Add the config to the output_dir, TODO: make this more elegant
config_suffix = (
"ddim_init_latents_t_idx_"
+ str(ddim_init_latents_t_idx)
+ "_nsteps_"
+ str(config.n_steps)
+ "_cfg_"
+ str(config.cfg)
+ "_pnpf"
+ str(config.pnp_f_t)
+ "_pnps"
+ str(config.pnp_spatial_attn_t)
+ "_pnpt"
+ str(config.pnp_temp_attn_t)
)
output_dir = os.path.join(config.output_dir, config_suffix)
os.makedirs(output_dir, exist_ok=True)
edited_video = [frame.resize(config.image_size, resample=Image.LANCZOS) for frame in edited_video]
# Downsampling the video for space saving
# edited_video = [frame.resize((512, 512), resample=Image.LANCZOS) for frame in edited_video]
# if config.pnp_f_t == 0.0 and config.pnp_spatial_attn_t == 0.0 and config.pnp_temp_attn_t == 0.0:
# edited_video_file_name = "ddim_edit"
# else:
# edited_video_file_name = "pnp_edit"
edited_video_file_name = "video"
export_to_video(edited_video, os.path.join(output_dir, f"{edited_video_file_name}.mp4"), fps=config.target_fps)
export_to_gif(edited_video, os.path.join(output_dir, f"{edited_video_file_name}.gif"))
logger.info(f"Saved video to: {os.path.join(output_dir, f'{edited_video_file_name}.mp4')}")
logger.info(f"Saved gif to: {os.path.join(output_dir, f'{edited_video_file_name}.gif')}")
for i, frame in enumerate(edited_video):
frame.save(os.path.join(output_dir, f"{edited_video_file_name}_{i:05d}.png"))
logger.info(f"Saved frames to: {os.path.join(output_dir, f'{edited_video_file_name}_{i:05d}.png')}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--template_config", type=str, default="./configs/group_pnp_edit/template.yaml")
parser.add_argument(
"--configs_json", type=str, default="./configs/group_config.json"
) # This is going to override the template_config
args = parser.parse_args()
template_config = OmegaConf.load(args.template_config)
# Set up logging
logging_level = logging.DEBUG if template_config.debug else logging.INFO
logging.basicConfig(level=logging_level, format="%(asctime)s - %(levelname)s - [%(funcName)s] - %(message)s")
logger = logging.getLogger(__name__)
logger.info(f"template_config: {OmegaConf.to_yaml(template_config)}")
# Load data jsonl into list
configs_json = args.configs_json
assert Path(configs_json).exists()
with open(configs_json, "r") as file:
configs_list = json.load(file)
logger.info(f"Loaded {len(configs_list)} configs from {configs_json}")
# Set up device and seed
device = torch.device(template_config.device)
torch.set_grad_enabled(False)
seed_everything(template_config.seed)
main(template_config, configs_list)